Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 113))

  • 1196 Accesses

8.8 Conclusions

Many photorefractive crystals that are insensitive in the IR spectral region may be sensitized for IR recording by two-step processes. Nondestructive readout of the holograms recorded by two-step processes is possible. In contrast to other methods for hologram stabilization, e.g., thermal fixing, the versatility of desired optical erasure is maintained. Utilization of the pyroelectric effect even promises to shift the recording wavelength to the region of the telecommunication wavelengths around 1.5 µmm. The lifetime of the holograms can approach years in materials like LiNbO3 if the doping level is optimized and if the crystals are dehydrated. Direct IR recording with light of the operational wavelength has two practical advantages: (1) Not only gratings, but also more sophisticated components can be fabricated. A wavelength filter that focuses the diffracted light into a fiber is one example. (2) The holograms can be recorded in the final device. This simplifies assembling and adjustment of the components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. von der Linde, A.M. Glass, and K.F. Rodgers, “Multiphoton Photorefractive Processes for Optical Storage in LiNbO3,” Appl. Phys. Lett. 25, 155 (1974).

    Article  ADS  Google Scholar 

  2. D. von der Linde, A.M. Glass, and K.F. Rodgers, “High-Sensitivity Optical Recording in KTN by Two-Photon Absorption,” Appl. Phys. Lett. 26, 22 (1975).

    Article  ADS  Google Scholar 

  3. H. Vormann and E. Krätzig, “Two Step Excitation in LiTaO3:Fe for Optical Data Storage,” Solid State Commun. 49, 843 (1984).

    Article  ADS  Google Scholar 

  4. Y. Ming, E. Krätzig, and R. Orlowski, “Photorefractive Effects in LiNbO3:Cr Induced by Two-Step Excitation,” phys. stat. sol. (a) 92, 221 (1985).

    Article  ADS  Google Scholar 

  5. A. Motes and J. J. Kim, “Intensity-Dependent Absorption Coefficient in Photorefractive BaTiO3 crystals,” J. Opt. Soc. Am. B 4, 1379 (1987).

    Article  ADS  Google Scholar 

  6. G.A. Brost, R.A. Motes, and J.R. Rotgé, “Intensity-Dependent Absorption and Photorefractive Effects in Barium Titanate,” J. Opt. Soc. Am. B 5, 1879 (1988).

    Article  ADS  Google Scholar 

  7. L. Holtmann, “A Model for the Nonlinear Photoconductivity of BaTiO3,” phys. stat. sol. (a) 113, K89 (1989).

    Article  ADS  Google Scholar 

  8. L. Holtmann, K. Buse, G. Kuper, A. Groll, H. Hesse, and E. Krätzig, “Photoconductivity and Light-Induced Absorption in KNbO3:Fe,” Appl. Phys. A 53, 81 (1991).

    Article  ADS  Google Scholar 

  9. K. Buse and E. Krätzig, “Light-Induced Charge Transport in Photorefractive Crystals” in Photorefractive Optics: Materials, Properties and Applications, ed. by F. Yu and S. Yin. Academic Press, 2000.

    Google Scholar 

  10. K. Buse and E. Krätzig, “Three-Valence Charge-Transport Model for Explanation of the Photorefractive Effect,” Appl. Phys. B 61, 27 (1995).

    Article  ADS  Google Scholar 

  11. K. Buse, A. Adibi, and D. Psaltis, “Non-Volatile Holographic Storage in Doubly Doped Lithium Niobate Crystals,” Nature 393, 665 (1998).

    Article  ADS  Google Scholar 

  12. K. Buse, L. Holtmann, and E. Krätzig, “Activation of BaTiO3 for Infrared Holographic Recording,” Opt. Commun. 85, 183 (1991).

    Article  ADS  Google Scholar 

  13. A. Gerwens, M. Simon, K. Buse, and E. Krätzig, “Activation of Cerium-Doped Strontium-Barium Niobate for Infrared Holographic Recording,” Opt. Commun. 135, 347 (1997).

    Article  ADS  Google Scholar 

  14. A. Kamshilin and M.P. Petrov, “Infrared Quenching of the Photoconductivity and Holographic Data Storage in Bi12SiO20,” Sov. Solid State Physics 23, 3110 (1981).

    Google Scholar 

  15. S.G. Odoulov, K.V. Shcherbin, and A.N. Shumeljuk, “Photorefractive Recording in BTO in the Near Infrared,” J. Opt. Soc. Am. B 11, 1780 (1994).

    Article  ADS  Google Scholar 

  16. S.G. Odoulov, A.N. Shumelyuk, U. Hellwig, R.A. Rupp, A.A. Grabar, and I.M. Stoyka, “Photorefraction in Tin Hypothiodiphosphate in the Near Infrared,” J. Opt. Soc. Am. B 13, 2352 (1996).

    Article  ADS  Google Scholar 

  17. P. Pogany, H.J. Eichler, and M. Hage Ali, “Two-Wave Mixing Gain Enhancement in Photorefractive CdZnTe:V by Optically Stimulated Electron-Hole Resonance,” J. Opt. Soc. Am. B 15, 2716 (1998).

    Article  ADS  Google Scholar 

  18. K. Shcherbin, F. Ramaz, B. Farid, B. Briat, and H.-J. von Bardesleben, “Photoinduced Charge Transfer Processes in Photorefractive CdTe:Ge,” OSA TOPS 27, 54 (1999).

    Google Scholar 

  19. D. von der Linde and A.M. Glass, “Photorefractive Effects for Reversible Holographic Storage of Information,” Appl. Phys. 8, 85 (1975).

    Article  ADS  Google Scholar 

  20. F. Jermann and J. Otten, “The Light-Induced Charge Transport in LiNbO3: Fe at High Light Intensities,” J. Opt. Soc. Am. B 10, 2085 (1993).

    Article  ADS  Google Scholar 

  21. M. Simon, F. Jermann, and E. Krätzig, “Intrinsic Photorefractive Centers in LiNbO3: Fe,” Appl. Phys. B 61, 89 (1995).

    Article  ADS  Google Scholar 

  22. K. Buse, F. Jermann, and E. Krätzig, “Infrared Holographic Recording in LiNbO3: Cu,” Appl. Phys. A 58, 191 (1994).

    Article  ADS  Google Scholar 

  23. K. Buse, F. Jermann, and E. Krätzig, “Infrared Holographic Recording in LiNbO3: Fe and LiNbO3: Cu,” Opt. Mat. 4, 237 (1995).

    Article  Google Scholar 

  24. J. Imbrock, S. Wevering, K. Buse, and E. Krätzig, “Nonvolatile Holographic Storage in Photorefractive Lithium Tantalate Crystals with Laser Pulses,” J. Opt. Soc. Am. B 16, 1302 (1999).

    Article  Google Scholar 

  25. A.M. Glass, D. von der Linde, and T.J. Negran, “High-Voltage Bulk Photovoltaic Effect and the Photorefractive Process in LiNbO3,” Appl. Phys. Lett. 25, 233 (1974).

    Article  ADS  Google Scholar 

  26. Y.S. Bai and R. Kachru, “Nonvolatile Holographic Storage with Two-Step Recording in Lithium Niobate Using cw Lasers,” Phys. Rev. Lett. 78, 2944 (1997).

    Article  ADS  Google Scholar 

  27. H. Guenther, G. Wittmann, R.M. Macfarlane, and R.R. Neurgaonkar, “Intensity Dependence and White-Light Gating of Two-Color Photorefractive Gratings in LiNbO3,” Opt. Lett. 22, 1305 (1997).

    Article  ADS  Google Scholar 

  28. J. Imbrock, D. Kip, and E. Krätzig, “Nonvolatile Holographic Storage in Irondoped Lithium Tantalate with Continuous-Wave Laser Light,” Opt. Lett. 24, 1302 (1999).

    Article  ADS  Google Scholar 

  29. M. Horowitz, B. Fischer, Y. Barad, and Y. Silberberg, “Photorefractive Effect in a BaTiO3 Crystal at the 1.5 µm Wavelength Regime by Two-Photon Absorption,” Opt. Lett. 21, 1120 (1996).

    Article  ADS  Google Scholar 

  30. K. Oba, P.-C. Sun, and Y. Fainman, “Nonvolatile Photorefractive Spectral Holography,” Opt. Lett. 23, 915 (1998).

    Article  ADS  Google Scholar 

  31. H.A. Eggert, J. Imbrock, C. Bäumer, H. Hesse, and E. Krätzig, “Infrared Holographic Recording in Lithium Tantalate Crystals via the Pyroelectric Effect,” Opt. Lett. 28, 1975 (2003).

    Article  ADS  Google Scholar 

  32. K. Buse, “Thermal Gratings and Pyroelectically Produced Charge Redistribution in BaTiO3 and KNbO3,” J. Opt. Soc. Am. B 10, 1266 (1993).

    Article  ADS  Google Scholar 

  33. K. Buse and K.H. Ringhofer, “Pyroelectric Drive for Light-Induced Charge Transport in the Photorefractive Process,” Appl. Phys. A 57, 161 (1993).

    Article  ADS  Google Scholar 

  34. V. Leyva, G.A. Rakuljic, and B. O’Conner, “Narrow Bandwidth Volume Holographic Optical Filter Operating at the Kr Transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079 (1994).

    Article  ADS  Google Scholar 

  35. R. Müller, M.T. Santos, L. Arizmendi, and J.M. Cabrera, “A Narrow-Band Interference Filter with Photorefractive LiNbO3,” J. Phys. D: Appl. Phys. 27, 241 (1994).

    Article  ADS  Google Scholar 

  36. S. Breer and K. Buse, “Wavelength Demultiplexing with Volume Phase Holograms in Photorefractive Lithium Niobate,” Appl. Phys. B 66, 339 (1998).

    Article  ADS  Google Scholar 

  37. S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-Crosstalk WDM by Bragg Diffraction from Thermally Fixed Reflection Holograms in Lithium Niobate,” Electronics Letters 34, 2419 (1999).

    Article  Google Scholar 

  38. J.J. Amodei and D.L. Staebler, “Holographic Pattern Fixing in Electro-Optic Crystals,” Appl. Phys. Lett. 18, 540 (1971).

    Article  ADS  Google Scholar 

  39. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of Thermal Fixing in Photorefractive Lithium Niobate Crystals,” Phys. Rev. B 56, 1225 (1997).

    Article  ADS  Google Scholar 

  40. L. Arizmendi, E.M. Miguel-Sanz, and M. Carrascosa, “Lifetimes of Thermally Fixed Holograms in LiNbO3: Fe Crystals,” Opt. Lett. 23, 960 (1998).

    Article  ADS  Google Scholar 

  41. H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, “Hydrogen as Origin of Thermal Fixing in LiNbO3: Fe,” Solid State Commun. 40, 543 (1981).

    Article  ADS  Google Scholar 

  42. I. Nee, K. Buse, F. Havermeyer, R.A. Rupp, M. Fally, and R.P. May, “Neutron Diffraction from Thermally Fixed Gratings in Photorefractive Lithium Niobate Crystals,” Phys. Rev. B 60, R9896 (1999).

    Article  ADS  Google Scholar 

  43. H.C. Külich, “A New Approach to Read Volume Holograms at Different Wavelengths,” Opt. Commun. 64, 407 (1987).

    Article  ADS  Google Scholar 

  44. I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of Iron in Lithium-Niobate Crystals for the Dark Storage Time of Holograms,” J. Appl. Phys. 88, 4282 (2000).

    Article  ADS  Google Scholar 

  45. Y.P. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and Electronic Dark Decay of Holograms in LiNbO3 Crystals,” Appl. Phys. Lett. 78, 4076 (2001).

    Article  ADS  Google Scholar 

  46. K. Buse, “Light-Induced Charge Transport Processes in Photorefractive Crystals II: Materials,” Appl. Phys. B 64, 391 (1997).

    Article  ADS  Google Scholar 

  47. S. Brülisauer, D. Fluck, P. Günter, L. Beckers, and C. Buchal, “Photorefractive Effect in Proton-Implanted Fe-doped KNbO3 Waveguides at Telecommunication Wavelengths,” J. Opt. Soc. Am. B 11, 2544 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Krätzig, E., Buse, K. (2006). Two-Step Recording in Photorefractive Crystals. In: Günter, P., Huignard, JP. (eds) Photorefractive Materials and Their Applications 1. Springer Series in Optical Sciences, vol 113. Springer, New York, NY. https://doi.org/10.1007/0-387-25192-8_8

Download citation

Publish with us

Policies and ethics