Skip to main content

Light-Induced Dynamic Gratings and Photorefraction

  • Chapter
Photorefractive Materials and Their Applications 1

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 113))

2.5 Conclusions

Dynamic gratings can be induced by interfering laser beams in almost any optical material. Some selected works related to laser-induced gratings have been used as references of this chapter, but inevitable these publications cover only a small fraction of the research activities in this widespread field. There are certainly many other important contributions that we could not include here. The following chapters of this volume are devoted to the photorefractive materials and will provide a detailed review of the effects related to this important class of materials, in particular, of the effects related to laser-induced gratings in photorefractive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds.: Holographic data storage, Vol. 76 of Springer Series in Optical Sciences, Springer, New York (2000).

    MATH  Google Scholar 

  2. H.J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt: High density disk storage by multiplexed microhologramms, IEEE J. Selected Topics Quantum Electron. 4(5), 840–848 (1998).

    Article  Google Scholar 

  3. D.C. Meisel, M. Wegener, and K. Busch: Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps, Phys. Rev. B, 70, 165104 (2004).

    Article  ADS  Google Scholar 

  4. A. Brignon and J.-P. Huignard, eds.: Phase conjugated laser optics, John Wiley & Sons (2004).

    Google Scholar 

  5. T. Riesbeck, E. Risse, and H.J. Eichler: Pulsed solid-state laser systems with high brightness by fiber phase conjugation, Proc. SPIE 5120, pp. 494–499, Nov. 2003.

    Article  ADS  Google Scholar 

  6. P. Yeh, Introduction to photorefractive nonlinear optics, Wiley 1993.

    Google Scholar 

  7. L. Solymar, DJ. Webb, and A. Grunnet-Jepson: The physics and applications of photorefractive materials, Oxford University Press (1996).

    Google Scholar 

  8. A.A. Zozulya: Propagation of light beams in photorefractive media: Fanning, self-bending and formation of self-pumped four-wave-mixing phase conjugation geometries, Phys. Rev Lett. 73(6), 818–825 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  9. H.J. Eichler, P. Günter, and D.W. Pohl: Laser-induced dynamic gratings, Springer-Verlag, Berlin (1986).

    Google Scholar 

  10. O. Svelto: Principles of lasers, Kluwer Academic/Plenum Publishers (1998).

    Google Scholar 

  11. A. Yariv: Quantum electronics, John Wiley & Sons, 3rd edn (1989).

    Google Scholar 

  12. A. Yariv and P. Yeh: Optical waves in crystals, John Wiley & Sons (1984).

    Google Scholar 

  13. M. Born and E. Wolf: Principles of optics, Cambridge University Press, 7th edn. (1999).

    Google Scholar 

  14. L. Bergmann and C. Schäfer: Optics of waves and particles, De Gruyter (1999).

    Google Scholar 

  15. G.N. Ramachandran and S. Ramaseshan: Crystal optics, Vol. XXV/1 of Handbuch der Physik, Springer-Verlag, Berlin (1961).

    Google Scholar 

  16. P. Günter, ed.: Nonlinear optical effects and materials, Vol. 72 of Springer Series in Optical Sciences. Springer, Berlin (2000).

    Google Scholar 

  17. G. Montemezzani, C. Medrano, and M. Zgonik: Charge carrier photoexcitation and two-wave mixing in dichroic materials, Phys. Rev. Lett. 97, 3403–3406 (1997).

    Article  ADS  Google Scholar 

  18. M. Nisoli, S.D. Silvestri, R. Scipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz: Compression of high-energy laser pulses below 5fs, Opt. Lett. 22(8), 522 (1997).

    Article  ADS  Google Scholar 

  19. A.A. Mahznev, T.F. Crimmins, and K.A. Nelson: How to make femtosecond pulses overlap, Opt. Lett. 23(17), 1378–1380 (1998).

    Article  ADS  Google Scholar 

  20. I.Z. Kozma and J. Hebling: Comparative analysis of optical setups for excitation of dynamic gratings by ultrashort light pulses, Opt. Commun. 199, 407–415 (2001).

    Article  ADS  Google Scholar 

  21. P. Pogany, A. Hermerschmidt, S.X. Dou, and H. J. Eichler: Simple measurement of the temporal coherence function of cw diode lasers by a photorefractive grating method, in 5th International Workshop on Laser Beam and Optics Characterization, H. Weber and H. Laabs, eds., pp. 71–78, March 2000.

    Google Scholar 

  22. H.J. Eichler, G. Enterlein, and D. Langhans: Investigation of the spatial coherence of a laser beam by a laser-induced grating method, Appl. Phys. 23, 299–302 (1980).

    Article  ADS  Google Scholar 

  23. C. Allain, H.Z. Cummins, and P. Lallemand: Critical slowing down near the Rayleigh-Benard convective instability, J. Physique Lett. 39, L475–L479 (1978).

    Article  Google Scholar 

  24. T. Sjodin, H. Petek, and H.-L. Dai: Ultrafast carrier dynamics in silicon: A two-color transient reflection grating study on a (111) surface, Phys. Rev Lett. 81(25) 5664–5667 (1998).

    Article  ADS  Google Scholar 

  25. M. Sudzius, R. Aleksiejunas, K. Jarasiunas, D. Verstraeten, and J.C. Launay: Investigation of nonequilibrium carrier transport in vanadium-doped CdTe and CdZnTe crystals using the time-resolved four-wave mixing technique, Semicond. Sci. Technol. 18(4), 367–76 (2003).

    Article  ADS  Google Scholar 

  26. P.F. Barker, J.H. Grinstead and R.B. Miles: Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings, Opt. Commun. 168, 177–182 (1999).

    Article  ADS  Google Scholar 

  27. M. Jazbinšek, I.D. Olenik, M. Zgonik, A.K. Fontecchio, and G.P. Crawford: Characterization of holographic polymer dispersed liquid crystal transmission gratings, J. Appl. Phys. 90(8), 3831–3837 (2001).

    Article  ADS  Google Scholar 

  28. M.J. Escuti, J. Qi, and G.P. Crawford: Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite. Threshold behavior and morphology, Appl. Phys. Lett. 83(7) 1331–1333 (2003).

    Article  ADS  Google Scholar 

  29. E. Garmire and A. Kost, eds: Nonlinear optics in semiconductors I, Vol. 58 of Semiconductors and Semimetals, Academic Press, San Diego (1999).

    Google Scholar 

  30. T. Numai: Fundamentals of semiconductor lasers, Vol. 93 of Springer Series in Optical Sciences. Springer, New York (2004).

    Google Scholar 

  31. K. Buse: Light-induced charge transport processes in photorefractive crystals, I: Models and experimental methods, II: Materials, Appl. Phys. B 64, 273–291, 391–407 (1997).

    Article  ADS  Google Scholar 

  32. B. Jancewicz: A variable metric electrodynamics. The Coulomb and Biot-Savart laws in anisotropic media, Ann. Phys. 245, 227–274 (1996).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. H. Kogelnik: Coupled-wave theory for thick hologram gratings, Bell Syst. Tech. J. 48, 2909–2948 (1969).

    Google Scholar 

  34. J.W. Goodman, Introduction to Fourier optics, McGraw-Hill, 2nd ed. (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Eichler, H.J., Hermerschmidt, A. (2006). Light-Induced Dynamic Gratings and Photorefraction. In: Günter, P., Huignard, JP. (eds) Photorefractive Materials and Their Applications 1. Springer Series in Optical Sciences, vol 113. Springer, New York, NY. https://doi.org/10.1007/0-387-25192-8_2

Download citation

Publish with us

Policies and ethics