Skip to main content

Finite temperature and density

  • Chapter
Quantum Field Theory

Part of the book series: Graduate Texts in Contemporary Physics ((GTCP))

  • 4108 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For some of the material in this chapter, the following books may be useful: M. Le Bellac, Thermal Field Theory, Cambridge University Press (2000); A. Das, Finite Temperature Field Theory, World Scientific Pub. Co. (1997); J.I. Kapusta, Finite Temperature Field Theory, Cambridge University Press (1994).

    Google Scholar 

  2. For a general reference on the use of the density matrix, see R.P. Feynman, Statistical Mechanics, Addison-Wesley Pub. Co. (1972).

    Google Scholar 

  3. The KMS condition is due to R. Kubo, J. Phys. Soc. Japan 12, 570 (1957); P.C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. The screening of electrostatic fields goes back to P. Debye’s work on electrolytes in the 1920s. The calculation using thermal photon propagator is due to V.P. Silin, Sov. J. Phys. JETP 11, 1136 (1960); V.N. Tsytovich, Sov. Phys. JETP, 13, 1249(1961); O.K. Kalashnikov and V.V. Klimov, Sov. J. Nucl. Phys., 31, 699 (1980); V.V. Klimov, Sov. J. Nucl. Phys. 33, 934 (1981); Sov. Phys. JETP 55, 199 (1982); H.A. Weldon, Phys. Rev. D26, 1394 (1982).

    MathSciNet  Google Scholar 

  5. Screening of nonabelian gauge fields, by isolating hard thermal loops, was done by R. Pisarski, Physica A158, 246 (1989); Phys. Rev. Lett. 63, 1129 (1989); E. Braaten and R. Pisarski, Phys. Rev. D42, 2156 (1990); Nucl. Phys. B337, 569 (1990); ibid. B339, 310 (1990); Phys. Rev. D45, 1827 (1992).

    ADS  Google Scholar 

  6. Calculations of the effective action for screening are also given in J. Frenkel and J.C. Taylor, Nucl. Phys. B334, 199 (1990); J.C. Taylor and S.M.H. Wong, Nucl. Phys. B346, 115 (1990); R. Efraty and V.P. Nair, Phys. Rev. Lett. 68, 2891 (1992); Phys. Rev. D47, 5601 (1993). We have followed the last reference in our presentation.

    Article  ADS  MathSciNet  Google Scholar 

  7. A kinetic equation approach has been used by P.F. Kelly et al, Phys. Rev. Lett. 72, 3461 (1994); Phys. Rev. D50, 4209 (1994).

    Article  ADS  Google Scholar 

  8. Kubo’s paper in reference 3 gives the Abelian Kubo formula.

    Google Scholar 

  9. For the calculation of the imaginary part of Γ we follow R. Jackiw and V.P. Nair, Phys. Rev. D48, 4991 (1993); Related work is also given by J.P. Blaizot and E. Iancu, Nucl. Phys. B390, 589 (1993); Phys. Rev. Lett. 70, 3376 (1993).

    ADS  Google Scholar 

  10. For screening at high densities, see C. Manuel, Phys. Rev. D53, 5866 (1996); G. Alexanian and V.P. Nair, Phys. Lett. B390, 370 (1997).

    ADS  Google Scholar 

  11. A recent review on screening effects for gauge fields is U. Kraemmer and A. Rebhan, Rep. Prog. Phys. 67, 351 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  12. The method of time-contour is due to J. Schwinger, J. Math. Phys. 2, 407 (1961); P.M. Bakshi and K. Mahanthappa, J. Math. Phys. 4, 1 (1963); ibid. 4, 12 (1963); L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. The Kadanoff-Baym equations are in L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics, W.A. Benjamin, Inc. (1962).

    Google Scholar 

  14. A general reference on quantum kinetic theory is S.R. De Groot, W.A. van Leeuwen and Ch. G. van Weert, Relativistic Kinetic Theory, North-Holland/ Elsevier (1980).

    Google Scholar 

  15. Imaginary time Green’s functions were introduced by T. Matsubara, Prog. Theor. Phys. 14, 351 (1955).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. For relativistic field theories, this formalism was used by D.A. Kirzhnits and A.D. Linde, Phys. Lett. B42, 471 (1972); Ann. Phys. 101, 195 (1976); L. Dolan and R. Jackiw, Phys. Rev. D9, 3320 (1974); S. Weinberg, Phys. Rev. D9, 3357 (1974). These papers also discuss symmetry restoration at high temperatures.

    ADS  Google Scholar 

  17. The observation that the ghosts must obey periodic boundary condition is due to C. Bernard, Phys. Rev. D9, 3312 (1974).

    ADS  Google Scholar 

  18. The situation regarding the order of the phase transition in the standard model, as well as the O(N) model at small N, is not completely satisfactory yet; for a recent review, see P. Arnold, Lecture at Quarks’ 94, Russia, 1994, http://arXiv.org/hep-ph/9410294.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Finite temperature and density. In: Quantum Field Theory. Graduate Texts in Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/0-387-25098-0_18

Download citation

Publish with us

Policies and ethics