Skip to main content

Optoelectronic Information Encryption with Incoherent Light

  • Chapter
Optical and Digital Techniques for Information Security

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Javidi and J.L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).

    Article  ADS  Google Scholar 

  2. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).

    Article  ADS  Google Scholar 

  3. H.-Y. Li, Y. Qiao, and D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993).

    Article  ADS  Google Scholar 

  4. C.L. Wilson, C.I. Watson, and E.G. Paek, “Combined optical and neural network fingerprint matching,” Proc. SPIE 3073, 373–382 (1997).

    Article  ADS  Google Scholar 

  5. J.F. Heanue, M.C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).

    Article  ADS  Google Scholar 

  6. R.K. Wang, I.A. Watson, and C.R. Chatwin, “Random phase encoding for optical security,” Opt. Eng. 35, 2464–2469 (1996).

    Article  ADS  Google Scholar 

  7. B. Javidi, A. Sergent, G. Zhang, and L. Guibert, “Fault tolerance properties of a double phase encoding encryption technique,” Opt. Eng. 992, 992–998 (1997).

    Article  ADS  Google Scholar 

  8. R.L. van Renesse, Optical Document Security (Artech House, Boston, 1998).

    Google Scholar 

  9. N. Yoshikawa, M. Itoh, and T. Yatagai, “Binary computer-generated holograms for security applications from a synthetic double-exposure method by electronbeam lithography,” Opt. Lett. 23, 1483–1485 (1998).

    Article  ADS  Google Scholar 

  10. F. Goudail, F. Bollaro, B. Javidi, and Ph. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am. A 15, 2629–2638 (1998).

    Article  ADS  Google Scholar 

  11. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998).

    Article  ADS  Google Scholar 

  12. B. Javidi and E. Ahouzi, “Optical security system with Fourier plane encoding,” Appl. Opt. 37, 6247–6255 (1998).

    Article  ADS  Google Scholar 

  13. J.L. Horner and B. Javidi, eds., Optical Engineering, Special Issue on Optical Security, Vol. 38 (SPIE, Bellingham, WA, 1999).

    Google Scholar 

  14. O. Matoba and B. Javidi, “Encrypted optical memory system using threedimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).

    Article  ADS  Google Scholar 

  15. P.C. Mogensen and J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25, 566–568 (2000).

    Article  ADS  Google Scholar 

  16. B. Javidi and T. Nomura, “Polarization encoding for optical security systems,” Opt. Eng. 39, 2439–2443 (2000).

    Article  ADS  Google Scholar 

  17. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by doublerandom phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887–889 (2000).

    Article  ADS  Google Scholar 

  18. Z. Zalevsky, D. Mendlovic, U. Levy, and G. Shabtay, “A new optical random coding technique for security systems,” Opt. Commun. 180, 15–20 (2000).

    Article  ADS  Google Scholar 

  19. T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39, 2031–2035 (2000).

    Article  ADS  Google Scholar 

  20. B. Zhu, S. Liu, and Q. Ran, “Optical image encryption based on multifractional Fourier transforms,” Opt. Lett. 25, 1159–1161 (2000).

    Article  ADS  Google Scholar 

  21. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288–7293 (1999).

    Article  ADS  Google Scholar 

  22. B. Javidi and T. Nomura, “Securing information by means of digital holography,” Opt. Lett. 25, 29–30 (2000).

    ADS  Google Scholar 

  23. E. Tajahuerce, O. Matoba, S.C. Verrall, and B. Javidi, “Optoelectronic information encryption using phase-shifting interferometry,” Appl. Opt. 39, 2313–2320 (2000).

    Article  ADS  Google Scholar 

  24. S. Lai and M.A. Neifeld, “Digital wavefront reconstruction and its application to image encryption,” Opt. Commun. 178, 283–289 (2000).

    Article  ADS  Google Scholar 

  25. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000).

    Article  ADS  Google Scholar 

  26. G.L. Rogers, Noncoherent Optical Processing (Wiley, New York, 1977).

    Google Scholar 

  27. W.T. Rhodes and A.A. Sawchuck, “Incoherent optical processing,” in S.H. Lee, ed., Optical Information Processing: Fundamentals (Springer-Verlag, Berlin, 1981), Chapter 3.

    Google Scholar 

  28. H. Bartelt, S.K. Case, and R. Hauck, “Incoherent-optical processing,” in H. Stark, ed., Applications of Optical Fourier Transforms (Academic, Orlando, 1982), Chapter 12.

    Google Scholar 

  29. F.T.S. Yu, White-Light Optical Signal Processing (Wiley, New York, 1985).

    Google Scholar 

  30. G.M. Morris and D.A. Zweig, “White-light Fourier transformations,” in J.L. Horner, ed., Optical Signal Processing (Academic, San Diego, 1987), Section 1.2.

    Google Scholar 

  31. P. Andres, V. Climent, J. Lancis, G. Mínguez-Vega, E. Tajahuerce, and A.W. Lohmann, “All-incoherent dispersion-compensated optical correlator,” Opt. Lett. 24, 1331–1333 (1999).

    Article  ADS  Google Scholar 

  32. A. Pe’er, D. Wang, A.W. Lohmann, and A. Friesem, Opt. Lett. 24, 1469 (1999).

    Article  ADS  Google Scholar 

  33. G. Mínguez-Vega, J. Lancis, E. Tajahuerce, V. Climent, M. Fernandez-Alonso, A. Pons, and P. Andres, “Scale-Tunable Optical Correlation with Natural Light,” Appl. Opt. 40, 5910–5911 (2001).

    Article  ADS  Google Scholar 

  34. J.D. Armitage and A.W. Lohmann, “Character recognition by incoherent spatial filtering,” Appl. Opt. 4, 461–467 (1965).

    Article  ADS  Google Scholar 

  35. A.W. Lohmann, “Matched filter with self-luminous objects,” Appl. Opt. 7, 561–563 (1968).

    Article  ADS  Google Scholar 

  36. A.W. Lohmann and H.W. Werlich, “Incoherent matched filtering with Fourier holograms,” Appl. Opt. 10, 670–672 (1971).

    Article  ADS  Google Scholar 

  37. J. van der Gracht and J.N. Mait, “Incoherent pattern recognition with phaseonly filters,” Opt. Lett. 17, 1703–1705 (1992).

    Article  ADS  Google Scholar 

  38. S. Gorodeisky and A.A. Friesem, “Phase filters for correlation with incoherent light,” Opt. Comm. 100, 421 (1993).

    Article  ADS  Google Scholar 

  39. J. Ding, M. Itoh, and T. Yatagai, “Optimal incoherent correlator for noisy gray-tone image recognition,” Opt. Lett. 20, 2411–2413 (1995).

    Article  ADS  Google Scholar 

  40. M. Françon, Laser Speckle and Applications in Optics (Academic, London, 1979).

    Google Scholar 

  41. J.C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  42. R.H. Katyl, “Compensating optical systems. Part 3: Achromatic Fourier transformation,” Appl. Opt. 11, 1255–1260 (1972).

    Article  ADS  Google Scholar 

  43. G.M. Morris, “Diffraction theory for an achromatic Fourier transformation,” Appl. Opt. 20, 2017–2025 (1981).

    Article  ADS  Google Scholar 

  44. P. Andrés, J. Lancis, and W.D. Furlan, “White-light Fourier transformer with low chromatic aberration,” Appl. Opt. 23, 4682–4687, (1992).

    Article  ADS  Google Scholar 

  45. E. Tajahuerce, V. Climent, J. Lancis, M. Fernández-Alonso, and P. Andres, “Achromatic Fourier transforming properties of a separated diffractive lens doublet,” Appl. Opt. 37, 6164–6173 (1998).

    Article  ADS  Google Scholar 

  46. J. Lancis, E. Tajahuerce, P. Andres, G. Mínguez-Vega, M. Fernández-Alonso, and V. Climent, “Quasi-wavelength-independent broadband optical Fourier transformer,” Opt. Commum. 171, 153–160 (1999).

    Article  ADS  Google Scholar 

  47. J. Lancis, G. Mínguez-Vega, E. Tajahuerce, M. Fernández-Alonso, V. Climent, and P. Andres, “Wavelength-compensated Fourier and Fresnel transformers; a unified approach,” Opt. Lett. 27, 942–944 (2002).

    Article  ADS  Google Scholar 

  48. D. Faklis and G.M. Morris, “Broadband imaging with holographic lenses,” Opt. Eng. 28, 592–598 (1989).

    ADS  Google Scholar 

  49. A.E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).

    Google Scholar 

  50. C. Brophy and G.M. Morris, “Speckle in achromatic-Fourier-transform systems,” J. Opt. Soc. Am. 73, 87 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Tajahuerce, E., Lancis, J., Andrés, P., Climent, V., Javidi, B. (2005). Optoelectronic Information Encryption with Incoherent Light. In: Javidi, B. (eds) Optical and Digital Techniques for Information Security. Advanced Sciences and Technologies for Security Applications, vol 1. Springer, New York, NY . https://doi.org/10.1007/0-387-25096-4_5

Download citation

Publish with us

Policies and ethics