Skip to main content

Energetics, Mechanics and Molecular Engineering of Calcium Cycling in Skeletal Muscle

  • Conference paper
Sliding Filament Mechanism in Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 565))

5. Summary

During muscle contraction and relaxation, Ca2+ moves through a cycle. About 20 to 40% of the ATP utilized in a twitch or a tetanus is utilized by the SR Ca2+ pump to sequester Ca2+. Parvalbumin is a soluble Ca2+ binding protein that functions in parallel with the SR Ca2+ pump to promote relaxation in rapidly contracting and relaxing skeletal muscles, especially at low temperatures. The rate of Ca2+ dissociation from troponin C, once thought to be much more rapid than the rate of relaxation, is likely to be similar to the rate of cross-bridge detachment and to the rate of muscle relaxation under some conditions. During the past fifty years, great progress has been made in understanding the Ca2+ cycle during skeletal muscle contraction and relaxation. Nonetheless, there are still mysteries waiting to be unraveled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. A.V. Hill, The heat of activation and the heat of shortening in a muscle twitch, Proc. Roy. Soc. B 136, 195–211(1949).

    CAS  Google Scholar 

  2. S. Ebashi, M. Endo, and I. Ohtsuki, Control of muscle contraction, Quat. Rev. Biophys. 2, 351–384 (1969).

    CAS  Google Scholar 

  3. E. Homsher, W.F.H.M. Mommaerts, N.V. Ricchiuti, and A. Wallner, Activation heat, activation metabolism and tension-related heat in frog semintendinosus muscles, J. Physiol. 220, 601–625 (1972).

    PubMed  CAS  Google Scholar 

  4. A.F. Huxley and R. Niedergerke, Structural changes in muscle during contraction, Nature 173, 971–973 (1954).

    Article  PubMed  CAS  Google Scholar 

  5. H.E. Huxley and J. Hanson, Changes in the cross-striations of muscle during contraction and stretch and their structural interpretations, Nature 173, 973–976 (1954).

    Article  PubMed  CAS  Google Scholar 

  6. I.C.H. Smith, Energetics of activation in frog and toad muscle, J. Physiol. 220, 583–599 (1972).

    PubMed  CAS  Google Scholar 

  7. J.A. Rall and B.A. Schottelius, Energetics of contraction in phasic and tonic skeletal muscles of the chicken, J. Gen. Physiol. 62, 303–323 (1973).

    Article  PubMed  CAS  Google Scholar 

  8. I.R. Wendt and C.L. Oibbs, Energy production of rat extensor digitorum longus muscle, Am. J. Physiol. 224, 1081–1086(1973).

    PubMed  CAS  Google Scholar 

  9. C.L. Gibbs and W.R. Gibson, Energy production of rat soleus muscle, Am. J. Physiol. 223 864–871 (1972).

    PubMed  CAS  Google Scholar 

  10. M.T. Crow and M.J. Kushmerick, Correlated reduction of velocity of shortening and the rate of energy utilization in mouse fast-twitch muscle during a continuous tetanus, J. Gen. Physiol. 82, 703–720 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. L.C. Rome and A.A. Klimov, Superfast contractions without superfast energetics: ATP usage by SR-Ca2+ pumps and crossbridges in toadfish swimbladder muscle, J. Physiol. 526, 279–286 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. J.A. Rall, Energetics of Ca2+ cycling during skeletal muscle contraction, Fed. Proc. 41, 155–160 (1982).

    PubMed  CAS  Google Scholar 

  13. J.A. Rall, Effects of previous activity on the energetics of activation in frog skeletal muscle, J. Gen. Physiol. 75, 617–631(1980).

    Article  PubMed  CAS  Google Scholar 

  14. N.R. Alpert, E.M. Blanchard, and L.A. Mulieri, Tension-independent heat in rabbit papillary muscle, J. Physiol. 414, 433–453 (1989).

    PubMed  CAS  Google Scholar 

  15. G.J.M. Stienen, R. Zaremba, and G. Elzinga, ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis, J. Physiol. 482, 109–122 (1995).

    PubMed  CAS  Google Scholar 

  16. A.V. Hill, Trails and Trials in Physiology (The Williams & Wilkins Company, Baltimore, 1965).

    Google Scholar 

  17. R.C. Woledge, N.A. Curtin, and E. Homsher, Energetics Aspects of Muscle Contraction (Academic Press, London, 1985).

    Google Scholar 

  18. N.A. Curtin and R.C. Woledge, Chemical change and energy production during contraction of frog muscle: how are their time courses related? J. Physiol. 288, 353–366 (1979).

    PubMed  CAS  Google Scholar 

  19. E. Homsher, C.J. Kean, A. Wallner, and V. Garibian-Sarian, The time-course of energy balance in an isometric tetanus, J. Gen. Physiol. 73, 553–567 (1979).

    Article  PubMed  CAS  Google Scholar 

  20. N.A. Curtin and R.C. Woldege, The effect of muscle length on energy balance in frog skeletal muscle, J. Physiol. 316, 453–468 (1981).

    PubMed  CAS  Google Scholar 

  21. C. Gerday and J.M. Gillis, Possible role of parvalbumin in the control of contraction, J. Physiol. 258, 96–97P (1976).

    Google Scholar 

  22. J.-F. Pechere, J. Derancourt, and J. Haiech, The participation of parvalbumins in the activation-relaxation cycle of vertebrate fast skeletal-muscle, FEBS Letters 75, 111–114 (1977).

    Article  PubMed  CAS  Google Scholar 

  23. N.A. Curtin and R.C. Woledge, Energy changes and muscular contraction, Physiol. Rev. 58, 690–761 (1978).

    PubMed  CAS  Google Scholar 

  24. S.J. Smith and R.C. Woledge, Thermodyamic analysis of calcium binding to frog parvalbumin, J. Muscle Res. Cell Mot. 6, 757–768 (1985).

    Article  CAS  Google Scholar 

  25. M. Tanokura and K. Yamada, A calorimetric study of Ca2+ binding to two major isotypes of bullfrog parvalbumin, FEBS 185, 165–169 (1985).

    Article  CAS  Google Scholar 

  26. C.W. Heinzman, Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells, Experientia Basel 40, 910–921 (1984).

    Article  Google Scholar 

  27. J.A. Rall, Role of parvalbumin in skeletal muscle relaxation, News Physiol. Sci. 11, 249–255 (1996).

    CAS  Google Scholar 

  28. J.M. Gillis, D. Thomason, J. Lefevre, and R.H. Kretsinger, Parvalbumins and muscle relaxation: a computer simulation study, J. Muscle Res. Cell Mot. 3, 377–398 (1982).

    Article  CAS  Google Scholar 

  29. M. Cannell and D.G. Allen, Model of calcium movements during activation in the sarcomere of frog skeletal muscle, Biophys. J. 45, 913–925 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. T. Hou, J.D. Johnson, and J.A. Rall, Parvalbumin content and Ca2+ and Mg2+ dissociation rates correlated with changes in relaxation rate of frog muscle fibres, J. Physiol. 441, 285–304 (1991).

    PubMed  CAS  Google Scholar 

  31. T. Hou, J.D. Johnson, and J.A. Rall, Effect of temperature on relaxation rate and Ca2+, Mg2+ dissociation rates from parvalbumin of frog muscle fibres, J. Physiol. 449, 399–410 (1992).

    PubMed  CAS  Google Scholar 

  32. Y. Jiang, J.D. Johnson, and J.A. Rall, Parvalbumin relaxes frog skeletal muscle when the sarcoplasmic reticulum Ca-ATPase is inhibited, Am. J. Physiol. 270, C411–C417 (1996).

    PubMed  CAS  Google Scholar 

  33. M.B. Cannell, Effect of tetanus duration on the free calcium during the relaxation of frog skeletal muscle fibres, J. Physiol. 376, 203–218 (1986).

    PubMed  CAS  Google Scholar 

  34. J.M. Raymackers, P. Gailly, M.C. Schoor, D. Pette, B. Schwaller, W. Hunziker, M.R. Celio, and J.M. Gillis, Tetanus relaxation of fast skeletal muscles of the mouse made parvalbumin deficient by gene inactivation, J. Physiol. 527, 355–364 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. B. Schwaller, J. Dick, G. Dhoot, S. Carroll, G. Vrbova, P. Nicotera, D. Pette, A. Wyss, H. Bluethmann, W. Hunziker, and M.R. Celio, Prolonged contraction-relaxation cycle of fast-twitch muscles in parvalbumin knockout mice, Am. J. Physiol. 276, C395–C403 (1999).

    PubMed  CAS  Google Scholar 

  36. M. Muntener, L. Kaser, J. Weber, and M.W. Berchtold, Increase of skeletal muscle relaxation speed by direct injection of parvalbumin cDNA, Proc. Nat. Acad. Sci. 92, 6504–6508 (1995).

    Article  PubMed  CAS  Google Scholar 

  37. P.A. Wahr, D.E. Michele, and J.M. Metzger, Parvalbumin gene transfer corrects diastolic dysfunction in diseased cardiac myocytes, Proc. Nat. Acad. Sci. 96, 11982–11985 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. E.R. Chin, R.W. Grange, F. Viau, A.R. Simard, C. Humphries, J. Shelton, R. Bassel-Duby, R.S. Williams, and R.N. Michel, Alterations in slow-twitch muscle phenotype in transgenic mice overexpressing the Ca2+ buffering protein parvalbumin, J. Physiol. 547, 649–663 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. J.D. Johnson, Y. Jiang, and M. Flynn, Modulation of Ca2+ transients and tension by intracellular EGTA in intact frog muscle fibers, Am. J. Physiol. 272, C1437–C1444 (1997).

    PubMed  CAS  Google Scholar 

  40. J.D. Johnson, S.C. Charlton, and J.D. Potter, A fluorescence stopped flow analysis of Ca2+ exchange with troponin C, J. Biol. Chem. 254, 3497–3502 (1979).

    PubMed  CAS  Google Scholar 

  41. J.D. Potter and J.D. Johnson, Troponin, in: Calcium and Cell Function, Vol II, edited by W.Y. Cheung (Academic Press, New York, 1982), pp. 145–172.

    Google Scholar 

  42. S.B. Tikunova, J.A. Rall, and J.P. Davis, Effect of hydrophobic residue substitutions with glutamine on Ca2+ binding and exchange with the N-domain of troponin C, Biochem. 41: 6697–6705 (2002).

    Article  CAS  Google Scholar 

  43. J.P. Davis, J.A. Rall, C. Alionte, and S.B. Tikunova, Mutations of hydrophobic residues in the N-domain of troponin C affect calcium binding and exchange with the troponin C-troponin I(96–148) complex and muscle force production, J. Biol. Chem, in press (2004).

    Google Scholar 

  44. Y. Luo, J.P. Davis, L.B. Smillie, and J.A. Rall, Determinants of relaxation rate in rabbit skinned skeletal muscle fibres, J. Physiol. 545, 887–901 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. J.P. Davis, S.B. Tikunova, D.R. Swartz, and J.A. Rall, Measurement of Ca2+ dissociation rates from troponin C (TnC) in skeletal myofibrils, Biophys. J. 86, 218a (2004).

    Google Scholar 

  46. S.B. Tikunova, J.P. Davis, and J.A. Rall, Engineering cardiac troponin C (cTnC) mutants with dramatically altered Ca2+ dissociation rates as molecular tools to study cardiac muscle relaxation, Biophys. J. 86, 394a (2004).

    Google Scholar 

  47. S.P. Robertson, J.D. Johnson, M.J. Holroyde, E.G. Kranias, J.D. Porter, and R.J. Solaro, The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin, J. Biol. Chem. 257, 260–263 (1982).

    PubMed  CAS  Google Scholar 

  48. R. Zhang and J.D. Potter, Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation, Circ. Res. 76, 1028–1035 (1995).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Rall, J.A. (2005). Energetics, Mechanics and Molecular Engineering of Calcium Cycling in Skeletal Muscle. In: Sugi, H. (eds) Sliding Filament Mechanism in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 565. Springer, Boston, MA. https://doi.org/10.1007/0-387-24990-7_14

Download citation

  • DOI: https://doi.org/10.1007/0-387-24990-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24989-6

  • Online ISBN: 978-0-387-24990-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics