Skip to main content

Zeta Functions Over Zeros of General Zeta and L-Functions

  • Conference paper
Zeta Functions, Topology and Quantum Physics

Part of the book series: Developments in Mathematics ((DEVM,volume 14))

Abstract

We describe in detail three distinct families of generalized zeta functions built over the nontrivial zeros of a rather general arithmetic zeta or L-function, extending the scope of two earlier works that related the Riemann zeros only. Explicit properties are also displayed more clearly than before. Several tabls of formulae cover the simplest concrete cases: L-functions for real primitive Dirichlet characters, and Dedekind zeta functions.

Also at: Institut de Mathématiques de Jussieu-Chevaleret (CNRS UMR 7586), Université Paris 7, F-75251 Paris Cedex 05, (France)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and LA. Stegun, Handbook of Mathematical Functions, chap. 23, Dover, New York (1965).

    Google Scholar 

  2. B.C. Berndt, On the Hurwitz zeta-function, Rocky Mt. J. Math. 2 (1972) 151–157.

    MathSciNet  MATH  Google Scholar 

  3. E. Bombieri and J.C. Lagarias, Complements to Li’s criterion for the Riemann Hypothesis, J. Number Theory 77 (1999) 274–287.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Cartier and A. Voros, Une nouvelle interprétation de la formule des traces de Selberg, C. R. Acad. Sci. Paris 307, Série I (1988) 143–148, and in: The Grothendieck Festschrift (vol. 2), eds. P. Cartier et al., Progress in Mathematics, Birkhäuser (1990) 1–67.

    MathSciNet  MATH  Google Scholar 

  5. I.C. Chakravarty, The Secondary Zeta-functions, J. Math. Anal. Appl. 30 (1970) 280–294.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Davenport, Multiplicative Number Theory (3rd ed., revised by H.L. Montgomery), Graduate Texts in Mathematics 74, Springer (2000).

    Google Scholar 

  7. J. Delsarte, Formules de Poisson avec reste, J. Anal. Math. (Jerusalem) 17 (1966) 419–431 (Sec. 7).

    MathSciNet  MATH  Google Scholar 

  8. C. Deninger, Local L-factors of motives and regularized determinants, Invent. Math. 107 (1992) 135–150 (thm 3.3 and Sec. 4).

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Deninger and M. Schröter, A distribution theoretic proof of Guinand’s functional equation for Cramer’s V-function and generalizations, J. London Math. Soc. (2) 52 (1995) 48–60.

    MathSciNet  MATH  Google Scholar 

  10. A. Erdélyi (ed.), Higher Transcendental Functions (Bateman Manuscript Project), Vol. I chap. 1 and Vol. III chap. 17, McGraw-Hill, New York (1953).

    Google Scholar 

  11. A.P. Guinand, A summation formula in the theory of prime numbers, Proc. London Math. Soc. Series 2, 50 (1949) 107–119 (Sec. 4(A)).

    Article  MathSciNet  Google Scholar 

  12. E. Hecke, Lectures on the theory of algebraic numbers, Springer (1981).

    Google Scholar 

  13. D.A. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J. 43 (1976) 441–481.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Hirano, N. Kurokawa and M. Wakayama, Half zeta functions, J. Ramanujan Math. Soc. 18 (2003) 195–209. [We understand that their polar parts for our function З should not have terms with γ either (N. Kurokawa, private communication).]

    MathSciNet  MATH  Google Scholar 

  15. G. Iilies, Cramér functions and Guinand equations, Acta Arith. 105 (2002) 103–118.

    Article  MathSciNet  Google Scholar 

  16. J. Jorgenson and S. Lang, Basic analysis of regularized series and products, Lecture Notes in Mathematics 1564, Springer (1993), and Explicit formulas for regularized products and series, Lecture Notes in Mathematics 1593, Springer (1994).

    Google Scholar 

  17. J. Kaczorowski, The k-functions in multiplicative number theory. I: On complex explicit formulae, Acta Arith. 56 (1990) 195–211.

    MathSciNet  Google Scholar 

  18. R. Kreminski, Newton—Cotes integration for approximating Stieltjes (generalized Euler) constants, Math. Comput. 72 (2003) 1379–1397.

    MathSciNet  MATH  Google Scholar 

  19. N. Kurokawa, Parabolic components of zeta functions, Proc. Japan Acad. 64, Ser. A (1988) 21–24, and Special values of Selberg zeta functions, in: Algebraic K-theory and algebraic number theory (Proceedings, Honolulu 1987), M.R. Stein and R. Keith Dennis eds., Contemp. Math. 83, Amer. Math. Soc. (1989) 133–149.

    Article  MathSciNet  MATH  Google Scholar 

  20. Yu.V. Matiyasevich, A relationship between certain sums over trivial and non-trivial zeros of the Riemann zeta-function, Mat. Zametki 45 (1989) 65–70 [Math. Notes (Acad. Sci. USSR) 45 (1989) 131–135.]

    MathSciNet  MATH  Google Scholar 

  21. B. Randol, On the analytic continuation of the Minakshisundaram—Pleijel zeta function for compact Riemann surfaces, Trans. Amer. Math. Soc. 201 (1975) 241–246.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Schröter and C. Soulé, On a result of Deninger concerning Riemann’s zeta function, in: Motives, Proc. Symp. Pure Math. 55 Part 1 (1994) 745–747.

    Google Scholar 

  23. H.M. Stark, Galois theory, algebraic number theory, and zeta functions, in: From Number Theory to Physics, M. Waldschmidt, P. Moussa, J.-M. Luck and C. Itzykson eds., Springer (1992) 313–393 (Sec. 3.1).

    Google Scholar 

  24. F. Steiner, On Selberg’s zeta function for compact Riemann surfaces, Phys. Lett. B 188 (1987) 447–454.

    MathSciNet  Google Scholar 

  25. A. Voros, Spectral functions, special functions and the Selberg zeta function, Commun. Math. Phys. 110 (1987) 439–465.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Voros, Spectral zeta functions, in: Zeta Functions in Geometry (Proceedings, Tokyo 1990), N. Kurokawa and T. Sunada eds., Advanced Studies in Pure Mathematics 21, Math. Soc. Japan (Kinokuniya, Tokyo, 1992) 327–358.

    Google Scholar 

  27. A. Voros, Zeta functions for the Riemann zeros, Ann. Inst. Fourier, Grenoble 53 (2003) 665–699 and erratum (2004, to appear).

    MathSciNet  MATH  Google Scholar 

  28. A. Voros, More zeta functions for the Riemann zeros, Saclay preprint http://www-spht.cea.fr/articles/T03/078/ (June 2003), to appear in: Frontiers in Number Theory, Physics and Geometry, vol. 1: On Random Matrices, Zeta Functions, and Dynamical Systems (Proceedings, Les Houches, March 2003), P. Cartier, B. Julia, P. Moussa and P. Vanhove eds., Springer (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Voros, A. (2005). Zeta Functions Over Zeros of General Zeta and L-Functions. In: Aoki, T., Kanemitsu, S., Nakahara, M., Ohno, Y. (eds) Zeta Functions, Topology and Quantum Physics. Developments in Mathematics, vol 14. Springer, Boston, MA. https://doi.org/10.1007/0-387-24981-8_10

Download citation

Publish with us

Policies and ethics