Skip to main content

Part of the book series: The Handbooks of Fuzzy Sets Series ((FSHS,volume 4))

Abstract

Figure 2.1 portrays cluster analysis. This field comprises three problems: tendency assessment, clustering and validation. Given an unlabeled data set, ① is there substructure in the data? This is clustering tendency — should you look for clusters at all? Very few methods — fuzzy or otherwise — address this problem. Panayirci and Dubes (1983), Smith and Jain (1984), Jain and Dubes (1988), Tukey (1977) and Everitt (1978) discuss statistical and informal graphical methods (visual displays) for deciding what — if any — substructure is in unlabeled data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Comments and bibliography

  • Bell, E. T. (1966). Men of mathematics, 5th printing, Simon and Schuster, NY.

    Google Scholar 

  • Duda, R. and Hart, P. (1973). Pattern Classification and Scene Analysis, Wiley Interscience, NY.

    Google Scholar 

  • Thorndike, R. L. (1953). Who belongs in the family?, Psychometrika, 18, 267–276.

    Article  Google Scholar 

  • Gersho, A. and Gray, R. (1992). Vector Quantization and Signal Compression, Kluwer, Boston.

    Book  MATH  Google Scholar 

  • Geva, A. B. and Pratt, H. (1994). Unsupervised clustering of evoked potentials by waveform, Med. and Bio. Engineering and Computing, 543–550.

    Google Scholar 

  • Dunn, J. C. (1974a). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, J. Cyberns., 3 (3), 32–57.

    MathSciNet  Google Scholar 

  • Bezdek, J. C. (1973). Fuzzy mathematics in pattern classification, Ph. D. Thesis, Cornell U., Ithaca, NY.

    Google Scholar 

  • Bezdek, J. C. (1974a). Numerical taxonomy with fuzzy sets, J. Math. Bio., 1 (1), 57–71.

    Article  MATH  MathSciNet  Google Scholar 

  • Krishnapuram, R. and Keller, J. M. (1993). A possibilistic approach to clustering, IEEE Trans. Fuzzy Syst., 1 (2), 98–110.

    Article  Google Scholar 

  • Yang, M. S. (1993). A survey of fuzzy clustering, Math. Comput. Modeling, 18 (11), 1–16.

    Article  MATH  Google Scholar 

  • Duda, R. and Hart, P. (1973). Pattern Classification and Scene Analysis, Wiley Interscience, NY.

    Google Scholar 

  • Dunn, J. C. (1974a). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, J. Cyberns., 3 (3), 32–57.

    MathSciNet  Google Scholar 

  • Clark, M., Hall, L. O., Goldgof, D, Velthuizen, R., Murtaugh, F.R. and Silbiger, M. (1998). Automatic tumor segmentation using knowledge-based techniques, IEEE Trans. Med. Imaging, 17 (2), 187–201.

    Article  Google Scholar 

  • Sato, M., Sato, Y. and Jain, L.C. (1997). Fuzzy Clustering Models and Applications, Physica-Verlag, Heidelberg, Germany.

    Google Scholar 

  • Bezdek, J. C. (1997). Computational intelligence and edge detection, Proc. AI 5: Fuzzy Neuro Syst. ‘87: Computational Intelligence, eds. A. Grauel, W. Becker and F. Belli, Infix Press, Zoest, Germany, 1–31.

    Google Scholar 

  • Bezdek, J. C. (1998). Computational intelligence defined–by everyone!, Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications, eds. O. Kaynak, L.A. Zadeh, B. Turksen and I. J. Rudas, Physica-Verlag, Heidelberg, Germany, 10–37.

    Google Scholar 

  • Redner, R., Hathaway, R. J. and Bezdek, J. C. (1987). Estimating the parameters of mixture models with modal estimators, Comm. in Stat. (A), 16 (9), 2639–2660.

    Article  MathSciNet  Google Scholar 

  • Bezdek, J. C., Hathaway, R. J. and Windham, M. (1991). Numerical comparison of the RFCM and AP algorithms for clustering relational data, Patt. Recog., 24 (8), 783–791.

    Google Scholar 

  • Simpson, P. (1992). Fuzzy min-max neural networks I: classification, IEEE Trans. Neural Networks, 3 (5), 776–786.

    Article  Google Scholar 

  • Yager, R. R. and and Filev, D.P. (1994a). Approximate clustering by the mountain method, IEEE Trans. Syst., Man and Cyberns., 24 (8), 1279–1283.

    Article  MathSciNet  Google Scholar 

  • Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation, J. Intell. and Fuzzy Syst., 2, 267–278.

    Article  MathSciNet  Google Scholar 

  • Backer, E. and Jain, A.K. (1981). A clustering performance measure based on fuzzy set decomposition, IEEE Trans. Patt. Anal. and Machine Intell., 3, 66–75.

    Article  MATH  Google Scholar 

  • Duda, R. and Hart, P. (1973). Pattern Classification and Scene Analysis, Wiley Interscience, NY.

    Google Scholar 

  • Hall, D. (1992). Mathematical Techniques in Multisensor Data Fusion, Artech House, Norwood, MA.

    Google Scholar 

  • Tou, J. T. (1979). DYNOC–A dynamic optimum cluster-seeking technique, Int. J. Comp. Syst. Science, 8, 541–547.

    MATH  MathSciNet  Google Scholar 

  • Vaidyanathan, M., Clarke, L.P., Velthuizen, R. P., Phuphanich, S., Bensaid, A. M., Hall, L. O., Bezdek, J. C., Greenberg, H., Trotti, A. and Silbiger, M. (1995). Comparison of supervised MRI segmentation methods for tumor volume determination during therapy, Mag. Res. Imaging, 13 (5), 719–728.

    Article  Google Scholar 

  • Velthuizen, R. P., Hall, L. O. and Clarke, L. P. (1996). Feature extraction with genetic algorithms for fuzzy clustering, Biomed. Engineering Appl., Basis and Communications, 8 (6), 496–517.

    Google Scholar 

  • Velthuizen, R. P., Hall, L. O., Clarke, L. P. and Silbiger, M. L. (1997). An investigation of mountain method clustering for large data sets, Patt. Recog., 30 (7), 1121–1135.

    Article  Google Scholar 

  • Wang L., Wang M., Yamada M., Seki H., and Itoh H. (1996). Fuzzy reasoning for image compression using adaptive triangular plane patches, Proc, Int. Conf. on Soft Computing, 2, eds. T. Yamakawa G. Matsumoto, World Scientific, Singapore, 753–756

    Google Scholar 

  • Wang, D., Keller, J., Carson, C.A., McAdoo, K., and Bailey, Ce (1998). Use of fuzzy logic-inspired features to improve bacterial recognition through classifier fusion, IEEE Trans. Syst., Man and Cyberns., 28 (4), 583–591.

    Article  Google Scholar 

  • Runkler, T. A. (1995). Improved cluster validity measures for the fuzzy c-elliptotypes algorithms, Proc. European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, 1331–1335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, N.R. (1999). Cluster Analysis for Object Data. In: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. The Handbooks of Fuzzy Sets Series, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-24579-0_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-24579-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24515-7

  • Online ISBN: 978-0-387-24579-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics