Abstract
A critical review of published methodology used in docking proteins and of current understanding of the problems associated with the inherent flexibility of proteins is presented. The underlying assumption made in the past of docking two rigid bodies (six degrees of freedom) is clearly not applicable to most protein-protein interactions as induced fit is the rule rather than the exception. Nevertheless, significant progress is being made as investigators increase flexibility of the docking partners with the availability of increased computational power. In the extreme case, however, docking of two proteins is equivalent to predicting the structure of the complex from the two sequences alone.
Keywords
- Energy Landscape
- Secondary Structure Element
- Protein Docking
- Protein Interface
- Docking Algorithm
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Abagyan, R., and Totrov, M. (2001). High-throughput docking for lead generation. Curr. Opin. Chem. Biol. 5:375–382.
Ackermann, F., G. Herrmann, F. Kummert, S. Posch, G. Sagerer, and D. Schromburg. (1995). Protein docking combining symbolic descriptions of molecular surfaces and grid-based scoring functions. In: Rawlings, C., Clark, D., Altmanet, R. (eds), Intelligent Systems for Molecular Biology. Menlo Park, CA, AAAI Press, pp. 3–11.
Aebersold, R., and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422:198–207.
Aloy, P., G. Moont, H.A. Gabb, E. Querol, F.X. Aviles, and M.J.E. Sternberg. (1998). Modelling repressor proteins docking to DNA. Proteins 33:535–549.
Ausiello, G., G. Cesareni, and M. Helmer-Citterich. (1997). ESCHER: a new docking procedure applied to the reconstruction of protein tertiary structure. Proteins 28:556–567.
Babu, Y.S., C.E. Bugg, and W.J. Cook. (1988). Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 204:191–204.
Bajorath, J. (2002). Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1:882–894.
Baker, D., and Lim, W.A. (2002). Folding and binding. From folding towards function. Curr. Opin. Struct. Biol. 12:11–13.
Bartoli, S., and Roelens, S. (2002). Binding of acetylcholine and tetramethylammonium to a cyclophane receptor: anion’s contribution to the cation-pi interaction. J. Am. Chem. Soc. 124:8307–8315.
Berg, O.G., and von Hippel, P.H. (1985). Diffusion-controlled macromolecular interactions. Annu. Rev. Biophys. Biophys. Chem. 14:131–160.
Berg, T. (2003). Modulation of protein-protein interactions with small organic molecules. Angew Chem. Int. Ed. Engl. 42:2462–2481.
Berglund, A., R.D. Head, E. Welsh, and G.R. Marshall. (2004). ProVal: a protein scoring function for the selection of native and near-native folds. Proteins Struct. Funct. Bioinform. 54:289–302.
Bliznyuk, A.A., and Gready, J.E. (1999). Simple method for locating possible ligand binding sites on protein surfaces. J. Comput. Chem. 20:983–988.
Blom, N.S., and Sygusch, J. (1997). High resolution fast quantitative docking using fourier domain correlation techniques. Proteins 27:493–506.
Bogan, A.A., and Thorn, K.S. (1998). Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280:1–9.
Bouzida, D., P.A. Rejto, and G.M. Verkhivker. (1999). Monte Carlo simulations of ligand-protein binding energy landscapes with the weighted histogram analysis method. Int. J. Quantum Chem. 73:113–121.
Bowman, M.J., and Chmielewski, J. (2002). Novel strategies for targeting the dimerization interface of HIV protease with cross-linked interfacial peptides. Biopolymers 66:126–133.
Bryngelson, J.D., J.N. Onuchic, N.D. Socci, and P.G. Wolynes. (1995). Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21:167–195.
Burley, S.K. (2000). An overview of structural genomics. Nat. Struct. Biol. 7:932–934.
Camacho, C.J., Z. Weng, S. Vajda, and C. DeLisi. (1999). Free energy landscapes of encounter complexes in protein-protein association. Biophys. J. 76:1166–1178.
Camacho, C.J., D.W. Gatchell, S.R. Kimura, and S. Vajda. (2000). Scoring docked conformations generated by rigid-body protein-protein docking. Proteins 40:525–537.
Che, Y., and Marshall, G.R. (2003). A statistical-based atom-atom based potential for protein/protein complex evaluation. Ph.D. Thesis, Protein-Protein Recognition: Structure, Energetics and Drug Design, Washington University St. Louis, August, 2003.
Chen, R., and Weng, Z. (2002). Docking unbound proteins using shape complementarity, desolvation, and electrostatistics. Proteins 47:281–294.
Chen, R., J. Mintseris, J. Janin, and Z. Weng. (2003). A protein-protein docking benchmark. Proteins 52:88–91.
Chene, P., J. Fuchs, J. Bohn, C. Garcia-Echeverria, P. Furet, and D. Fabbro. (2000). A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J. Mol. Biol. 299:245–253.
Chothia, C., M. Levitt, and D. Richardson. (1981). Helix to helix packing in proteins. J. Mol. Biol. 145:215–250.
Chrunyk, B.A., M.H. Rosner, Y. Cong, A.S. McColl, I.G. Otterness, and G.O. Daumy. (2000). Inhibiting protein-protein interactions: a model for antagonist design. Biochemistry 39:7092–7099.
Clackson, T., and Wells, J.A. (1995). A hot spot of binding energy in a hormone-receptor interface. Science 267:383–386.
Cohen, F.E., T.J. Richmond, and F.M. Richards. (1979). Protein folding: evaluation of some simple rules for the assembly of helices into tertiary structures with myoglobin as an example. J. Mol. Biol. 132:275–288.
Cunningham, B.C., and Wells, J.A. (1993). Comparison of a structural and a functional epitope. J. Mol. Biol. 234:554–563.
Dill, K.A. (1990). Dominant forces in protein folding. Biochemistry 29:7133–7155.
Dill, K.A. (1999). Polymer principles and protein folding. Protein Sci. 8:1166–1180.
Dixon, J.S. (1997). Evaluation of the CASP2 docking section. Proteins (Suppl. 1):198–204.
Drozdov-Tikhomirov, L.N., D.M. Linde, V.V. Poroikov, A.A. Alexandrov, and G.I. Skurida. (2001). Molecular mechanisms of protein-protein recognition: whether the surface placed charged residues determine the recognition process? J. Biomol. Struct. Dyn. 19:279–284.
Duncan, B.S., and Olson, A.J. (1993). Approximation and characterization of molecular surfaces. Biopolymers 33:219–229.
Eisenberg, D., E.M. Marcotte, I. Xenarios, and T.O. Yeates. (2000). Protein function in the post-genomic era. Nature 405:823–826.
Ewing, T.J.A., and Kuntz, I.D. (1997). Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem. 18:1175–1189.
Fernandez-Recio, J., M. Totrov, and R. Abagyan. (2002). Soft protein-protein docking in internal coordinates. Protein Sci. 11:280–291.
Finn, F.M., and Hofmann, K. (1973). The S-peptide S-protein system: a model for hormone-receptor interaction. Acc. Chem. Res. 6:169–176.
Fischer, D., S.L. Lin, H.L. Wolfson, and R. Nussinov. (1995). Ageometry-based suite of molecular docking processes. J. Mol. Biol. 248:459–477.
Fitzjohn, P.W., and Bates, P.A. (2003). Guided docking: first step to locate potential binding sites. Proteins 52:28–32.
Friedman, J.M. (1997). Fourier-filtered van der Waals contact surfaces: accurate ligand shaped from protein structures. Protein Eng. 10:851–863.
Gabb, H.A., R.M. Jackson, and M.J.E. Sternberg. (1997). Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272:106–120.
Galaktionov, S., G.V. Nikiforovich, and G.R. Marshall. (2001). Ab initio modeling of small, medium, and large loops in proteins. Biopolymers 60:153–168.
Gallivan, J.P., and Dougherty, D.A. (2000). A computational study of cation-pi interactions vs. salt bridges in aqueous media: implications for protein engineering. J. Am. Chem. Soc. 122:870–874.
Garcia-Echeverria, C., P. Chene, M.J. Blommers, and P. Furet. (2000). Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J. Med. Chem. 43:3205–3208.
Gardiner, E.J., P. Willett, and P.J. Artymiuk. (2001). Protein docking using a genetic algorithm. Proteins 44:44–56.
Glaser, F., D. Steinberg, I.A. Vakser, and N. Ben-Tal. (2001). Residue frequencies and pairing preferences at protein-protein interfaces. Proteins 43:89–102.
Glen, R.C., and Allen, S.C. (2003). Ligand-protein docking: cancer research at the interface between biology and chemistry. Curr. Med. Chem. 10:763–767.
Goldsmith-Fischman, S., and Honig, B. (2003). Structural genomics: computational methods for structure analysis. Protein Sci. 12:1813–1821.
Goodford, P.J. (1984). Drug design by the method of receptor fit. J. Med. Chem. 27:557–564.
Goodsell, D.S., H. Lauble, C.D. Stout, and A.J. Olson. (1993). Automated docking in crystallography: analysis of the substrates of aconitase. Proteins Struct. Funct. Genet. 17:1–10.
Gray, J.J., S. Moughon, C. Wang, O. Schueler-Furman, B. Kuhlman, C.A. Rohl, and D. Baker. (2003). Protein-protein docking with simultaneous optimization of rigid body displacement and side-chain conformations. J. Mol. Biol. 331:281–299.
Greer, J., and Bush, B.L. (1978). Macromolecular shape and surface maps by solvent exclusion. PNAS 75:303–307.
Grossfield, A., P. Ren, and J.W. Ponder. (2003). Ion solvation thermodynamics from simulation with a polarizable force field. J Am Chem Soc 125:15671–15682.
Halperin, I., B. Ma, H. Wolfson, and R. Nussinov. (2002). Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 47:409–443.
Harrison, R.W., I.V. Kourinov, and L.C. Andrews. (1994). The Fourier-Green’s function and the rapid evaluation of molecular potentials. Protein Eng. 7:359–369.
Hart, R.K., R.V. Pappu, and J.W. Ponder. (2000). Exploring the similarities between potential smoothing and simulated annealing. J. Comput. Chem. 21:531–552.
Haspel, N., C.J. Tsai, H. Wolfson, and R. Nussinov. (2002). Reducing the computational complexity of protein folding via fragment folding and assembly. Protein Sci. 12:1177–1187.
Head, R.D., M.L. Smythe, T.I. Oprea, C.L. Waller, S.M. Green, and G.R. Marshall. (1996). Validate-a new method for the receptor-based prediction of binding affinities of novel ligands. J. Am. Chem. Soc. 118:3959–3969.
Heifetz, A., E. Katchalski-Katzir, and M. Eisenstein. (2002). Electrostatistics in protein-protein docking. Protein Sci. 11:571–587.
Ho, C.M.W., and Marshall, G.R. (1990). Cavity search: an algorithm for the isolation and display of cavity-like binding regions. J. Comput. Aided Mol. Des. 4:337–354.
Hodgkin, E.E., J.D. Clark, K.R. Miller, and G.R. Marshall. (1990). Conformational analysis and helical preferences of normal and α, α-dialkyl amino acids. Biopolymers 30:533–546.
Hu, Z., B. Ma, H. Wolfson, and R. Nussinov. (2000). Conservation of polar residues as hot spots at protein interfaces. Proteins 39:331–342.
Hubbard, S.J., and Argos, P. (1994). Cavities and packing at protein interfaces. Protein Sci. 3:2194–2206.
Inbar, Y., H. Benyamini, R. Nussinov, and H.J. Wolfson. (2003). Protein structure prediction via combinatorial assembly of substructural units. Bioinformatics 19:i158–i168.
Janin, J. (1995). Principles of protein-protein recognition from structure to thermodynamics. Biochimie 77:497–505.
Janin, J., K. Henrick, J. Moult, L. Ten Eyck, M.J.E. Sternberg, S. Vajda, I. Vakser, and S.J. Wodak. (2003). CAPRI: Acritical assessment of predicted Interactions. Proteins 52:2–9.
Jernigan, R.L., and Bahar, I. (1996). Structure-derived potentials and protein simulations. Curr. Opin. Struct. Biol. 6:195–209.
Jiang, S., and Vakser, I.A. (2000). Side chains in transmembrane helices are shorter at helix-helix interfaces. Proteins 40:429–435.
Jiang, S., and Vakser, I.A. (2004). Shorter side chains optimize helix-helix packing. Protein Sci. 13:1426–1429.
Jiang, F., and Kim, S.-H. (1991). “Soft Docking”: matching of molecular surface cubes. J. Mol. Biol. 219:79–102.
Jiang, F., W. Lin, and Z. Rao. (2002). SOFTDOCK: understanding of molecular recognition through a systematic docking study. Protein Eng. 15:257–263.
Jiang, S., A. Tovchigrechko, and I.A. Vakser. (2003). The role of geometric complementarity in secondary structure packing: a systematic docking study. Protein Sci. 12:1646–1651.
Jones, S., and Thornton, J.M. (1996). Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93:13–20.
Jorgensen, W.L., D.S. Maxwell, and J. Tirado-Rives. (1996). Development and testing of the OPLS allatom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118:11225–11236.
Katchalski-Katzir, E., I. Shariv, M. Eisenstein, A.A. Friesem, C. Aflalo, and I.A. Vakser. (1992). Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 89:2195–2199.
Keskin, O., I. Bahar, A.Y. Badretdinov, O.B. Ptitsyn, and R.L. Jernigan. (1998). Empirical solvent-mediated potentials hold for both intra-molecular and inter-molecular inter-esidue interactions. Protein Sci. 7:2578–2586.
Kim, M.K., G.S. Chirikjian, and R.L. Jernigan. (2002a). Elastic models of conformational transitions in macromolecules. J Mol Graph Model 21:151–160.
Kim, M.K., R.L. Jernigan, and G.S. Chirikjian. (2002b). Efficient generation of feasible pathways for protein conformational transitions. Biophys J 83:1620–1630.
Knegtel, R.M., and Wagener, M., (1999). Efficacy and selectivity in flexible database docking. Proteins 37:334–345.
Korn, A.P., and Burnett, R.M. (1991). Distribution and complementarity of hydropathy in multisubunit proteins. Proteins 9:37–55.
Kuntz, I.D., J.M. Blaney, S.J. Oatley, R. Langridge, and T.E. Ferrin. (1982). A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161:269.
Kussie, P.H., S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A.J. Levine, and N.P. Pavletich. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953.
Lamb, M.L., K.W. Burdick, S. Toba, M.M. Young, K.G. Skillman, X.Q. Zou, J.R. Arnold, and I.D. Kuntz. (2001). Design, docking, and evaluation of multiple libraries against multiple targets. Proteins Struct. Funct. Genet. 42:296–318.
Larsen, T.A., A.J. Olson, and D.S. Goodsell. (1998). Morphology of protein-protein interfaces. Structure 6:421–427.
Laskowski, R.A., N.M. Luscombe, M.B. Swindells, and J.M. Thornton. (1996). Protein clefts in molecular recognition and function. Protein Sci. 5:2438–2452.
Lawrence, M.C., and Colman, P.M. (1993). Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234:946–950.
Lee, S.Y., H.S. Cho, J.G. Pelton, D. Yan, R.K. Henderson, D.S. King, L. Huang, S. Kustu, E.A. Berry, and D.E. Wemmer. (2001). Crystal structure of an activated response regulator bound to its target. Nat Struct Biol 8:52–56.
Lichtarge, O., and Sowa, M.E. (2002). Evolutionary predictions of binding surfaces and interactions. Curr. Opin. Struct. Biol. 12:21–27.
Lijnzaad, P., and Argos, P. (1997). Hydrophobic patches on protein subunit interfaces: charactersitics and prediction. Proteins 28:333–343.
Lo Conte, L., C. Chothia, and J. Janin. (1999). The atomic structure of protein-protein recognition sites. J Mol Biol 285:2177–2198.
Lu, L., H. Lu, and J. Skolnick. (2003). Development of unified statistical potentials describing proteinprotein interactions. Biophys. J. 84:1895–1901.
Lu, L., H. Lu, and J. Skolnick. (2002). MULTIPROSPECTOR: an algorithm for the prediction of proteinprotein interactions by multimeric threading. Proteins 49:350–364.
Ma, J., and Straub, J.E. (1994). Simulated annealing using the classical density distribution. J. Chem. Phys. 101:533–541.
MacKerell, A.D., D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102:3586–3616.
Makino, S., T.J.A. Ewing, and I.D. Kuntz. (1999). DREAM++: Flexible docking program for virtual combinatorial libraries. J. Comput. Aided Mol. Des. 13:513–532.
Mariuzza, R.A., and Poljak, R.J. (1993). The basics of binding: mechanisms of antigen recognition and mimicry by antibodies. Curr. Opin. Immunol. 5:50–55.
Marshall, G.R. (1992). Three-dimensional structure of peptide-protein complexes: implications for recognition. Curr. Opin. Struct. Biol. 2:904–919.
Marshall, G.R., C.D. Barry, H.E. Bosshard, R.A. Dammkoehler, and D.A. Dunn. (1979). The conformational parameter in drug design: the active analog approach. In: E.C. Olson, and Christoffersen, R.E. (eds), Computer-Assisted Drug Design. Washington, D.C., American Chemical Society. ACS Symposium 112:205–226.
Marshall, G.R., R.H. Head, and R. Ragno. (2000). Affinity prediction: the sina qua non. In: Di Cera, E. (eds), Thermodynamics in Biology. Oxford University Press, New York. pp.87–111.
McCammon, J.A. (1998). Theory of biomolecular recognition. Curr. Opin. Struct. Biol. 8:245–249.
McCoy, A.J., V.C. Epa, and P.M. Colman. (1997). Electrostatic complementarity at protein/protein interfaces. J. Mol. Biol. 268:570–584.
Meador, W.E., A.R. Means, and F.A. Quiocho. (1992). Target enzyme recognition by calmodulin: 2,4:o A structure of a calmodulin-peptide complex. Science 257:1251–1255.
Meyer, M., P. Wilson, and D. Schomburg. (1996). Hydrogen bonding and molecular surface shape complementarity as a basis for protein docking. J. Mol. Biol. 264:199–210.
Miller, D.W., and Dill, K.A. (1997). Ligand binding to proteins: the binding landscape model. Protein Sci. 6:2166–2179.
Miller, M., J. Schneider, B.K. Sathyanarayana, M.V. Toth, G.R. Marshall, L. Clawson, L. Selk, S.B. Kent, and A. Wlodawer. (1989). Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science 246:1149–1152.
Miyazawa, S., and Jernigan, R.L. (1999). Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues. Proteins 34:49–68.
Moont, G., H.A. Gabb, and M.J.E. Sternberg. (1999). Use of pair potential across protein interfaces in screening predicted docked complexes. Proteins 35:364–373.
Morris, G.M., D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, and A.J. Olson. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19:1639–1662.
Moult, J., K. Fidelis, A. Zemla, and T. Hubbard. (2003). Critical assessment of methods of protein structure prediction (CASP)-round V. Proteins 53:334–339.
Murzin, A.G., and Finkelstein, A.V. (1988). General architecture of the alpha-helical globule. J. Mol. Biol. 204:749–769.
Nemethy, G., M.S. Pottle, and H.A. Scheraga. (1983). Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occuring amino acids. J. Phys. Chem. 87:1883–1887.
Nikiforovich, G.V., and Marshall, G.R. (2003). 3D Model for meta-II rhodopsin, an activated G-protein coupled receptor. Biochemistry 42:9110–9120.
Nikiforovich, G.V., S.G. Galaktionov, V.M. Tseitin, D.R. Lowis, M.D. Shenderovich, and G.R. Marshall. (1998). 3D Modeling for TM receptors: algorithms and validations. Lett. Pept. Sci. 5:413–415.
Nikiforovich, G.V., S. Galaktionov, J. Balodis, and G.R. Marshall. (2001). Novel approach to computer modeling of seven-helical transmambrane proteins: current progress in test case of bacteriorhodopsin. Acta Biochim. Polon. 48:53–64.
Novotny, J., M. Handschumacher, E. Haber, R.E. Bruccoleri, W.B. Carlson, D.W. Fanning, J.A. Smith, and G.D. Rose. (1986). Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc. Natl. Acad. Sci. USA 83:226–230.
Nussinov, R., and Wolfson, H.J. (1991). Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques. PNAS 88:10495–10499.
Oliver, S. (2000). Guilt-by-association goes global. Nature 403:601–603.
Oprea, T.I., and Marshall, G.R. (1998). Receptor-based prediction of binding affinities. Perspect. Drug Discov. Des. 9–11:35–61.
Palma, P.N., L. Krippahl, J.E. Wampler, and J.J.G. Moura. (2000). BiGGER: Anew(soft) docking algorithm for predicting protein interactions. Proteins 39:372–384.
Pappu, R.V., G.R. Marshall, and J.W. Ponder. (1999). A potential smoothing algorithm accurately predicts transmembrane helix packing. Nat. Struct. Biol. 6:50–55.
Peters, K.P., J. Fauck, and C. Frommel. (1996). The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J. Mol. Biol. 256:201–213.
Piela, L., J. Kostrowicki, and H.A. Scheraga. (1989). The multiple-minima problem in the conformational analysis of molecules. Deformation of the potential energy hypersurface by the diffusion equation method. J. Phys. Chem. 93:3339–3346.
Platzer, K.E.B., F.A. Momany, and H.A. Scheraga. (1972). Conformational energy calculations of enzymesubstrate interactions. I. Computation of preferred conformations of some substrates of chymotrypsin. Int. J. Pept. Protein Res. 4:187–200.
Ponder, J.W., and Case, D.A. (2003). Force fields for protein simulations. Adv. Protein Chem. 66:27–85.
Ponder, J.W., and Richards, F.M. (1987). Internal packing and protein structural classes. Cold Spring Harbor Symp. Quant. Biol. LII:421–428.
Reddy, B.V.B., and Blundell, T.L.(1993). Packing of secondary structure elements in proteins. Analysis and prediction of inter-helix distances. J. Mol. Biol. 233:464–479.
Richards, F.M. (1977). Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6:151–176.
Richmond, T.J., and Richards, F.M. (1978). Packing of alpha-helices: geometrical constraints and contact areas. J. Mol. Biol. 119:537–555.
Ritchie, D.W., and Kemp, G.J.L. (2000). Protein docking using spherical polar Fourier correlations. Proteins 39:178–194.
Sali, A., R. Glaeser, T. Earnest, and W. Baumeister. (2003). Fromwords to literature in structural proteomics. Nature 422:216–225.
Salwinski, L., and Eisenberg, D. (2003). Computational methods of analysis of protein-protein interactions. Curr. Opin. Struct. Biol. 13:377–382.
Samudrala, R., and Levitt, M. (2000). Decoys ‘R’ Us: a database of incorrect conformations to improve protein structure prediction. Protein Sci. 9:1399–1401.
Schneidman-Duhovny, D., Y. Inbar, V. Polak, M. Shatsky, I. Halperin, H. Benyamini, A. Barzilai, O. Dror, N. Haspel, R. Nussinov, and H.J. Wolfson. (2003). Taking geometry to its edge: fast unbound rigid (and hinge-bent) docking. Proteins 52:107–112.
Shoemaker, B.A., J.J. Portman, and P.G. Wolynes. (2000). Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl. Acad. Sci. USA 97:8868–8873.
Shoichet, B.K., A.R. Leach, and I.D. Kuntz. (1999). Ligand solvation in molecular docking. Proteins 34:4–16.
Shultz, M.D., and Chmielewski, J. (1999). Probing the role of interfacial residues in a dimerization inhibitor of HIV-1 protease. Bioorg. Med. Chem. Lett. 9:2431–2436.
Sippl, M.J., M. Ortner, M. Jaritz, P. Lackner, and H. Flockner. (1996). Helmholtz free energies of atom pair interactions in proteins. Fold. Des. 1:289–298.
Skolnick, J., J.S. Fetrow, and A. Kolinski. (2000). Structural genomics and its importance for gene function analysis. Nat. Biotech. 18:283–287.
Sternberg, M.J.E., H.A. Gabb, and R.M. Jackson. (1998). Predictive docking of protein-protein and protein-DNA complexes. Curr. Opin. Struct. Biol. 8:250–256.
Sternberg, M.J.E., H.A. Gabb, and R.M. Jackson. (1998). CombiDOCK: Structure-based combinatorial docking and library design. J. Comput. Aided Mol. Des. 12:597–604.
Ten Eyck, L. F., J. Mandell, V.A. Roberts, and M.E. Pique. (1995). Surveying molecular interactions with DOT. ACM/IEEE Supercomputing Conference, San Diego, CA.
Todd, M.J., N. Semo, and E. Freire. (1998). The structural stability of the HIV-1 protease. J. Mol. Biol. 283:475–488.
Tong, A.H.Y., G. Lesage, G.D. Bader, H. Ding, H. Xu, X. Xin, J. Young, G.F. Berriz, R.L. Brost, M. Chang, Y. Chen, X. Cheng, G. Chua, H. Friesen, D.S. Goldberg, J. Haynes, C. Humphries, G. He, S. Hussein, L. Ke, N. Krogan, Z. Li, J.N. Levinson, H. Lu, P. Menard, C. Munyana, A.B. Parsons, O. Ryan, R. Tonikian, T. Roberts, A.-M. Sdicu, J. Shapiro, B. Sheikh, B. Suter, S.L. Wong, L.V. Zhang, H. Zhu, C.G. Burd, S. Munro, C. Sander, J. Rine, J. Greenblatt, M. Peter, A. Bretscher, G. Bell, F.P. Roth, G.W. Brown, B. Andrews, H. Bussey, and C. Boone. (2004). Global mapping of the yeast genetic interaction network. Science 303:808–813.
Totrov, M., and Abagyan, R. (1994). Detailed ab initio prediction of lysozyme-antibody complex with 1.6A accuracy. Nat. Struct. Biol. 1:259–263.
Tovchigrechko, A., and Vakser, I.A. (2001). How common is the funnel-like energy landscape in proteinprotein interactions? Protein Sci. 10:1572–1583.
Tovchigrechko, A., C.A. Wells, and I.A. Vakser. (2002). Docking of protein models. Protein Sci. 11:1888–1896.
Trosset, J.-Y., and Scheraga, H.A. (1998). Reaching the global minimum in docking simulations: a Monte Carlo energy minimization approach using Bezier splines. Proc. Nat. Acad. Sci. USA 95:8011–8015.
Trosset, J.Y., and Scheraga, H.A. (1999). PRODOCK: software package for protein modeling and docking. J. Comput. Chem. 20:412–427.
Tsai, C.-J., S.L. Lin, H.J. Wolfson, and R. Nussinov. (1996). Protein-protein interfaces: architectures and interactions in protein-protein interfaces and in protein cores. Their similarities and differences. Crit. Rev. Biochem. Mol. Biol. 31:127–152.
Tsai, C.-J., S.L. Lin, H. Wolfson, and R. Nussinov. (1997). Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci. 6:53–64.
Tsai, C.-J., S. Kumar, B. Ma, and R. Nussinov. (1999). Folding funnels, binding funnels, and protein function. Protein Sci. 8:1181–1190.
Uetz, P., L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnson, S. Fields, and J.M. Rothberg. (2000). A comprehensive analysis of protein-protein interactions in Saccaromyces cerevisiae. Nature 403:623–627.
Vajda, S., M. Sippl, and J. Novotny. (1997). Empirical potentials and functions for protein folding and binding. Curr. Opin. Struct. Biol. 7:222–228.
Vajda, S., I.A. Vakser, M.J.E. Sternberg, and J. Janin. (2002). Meeting report: modeling of protein interactions in genomes. Proteins 47:444–446.
Vakser, I.A. (1995). Protein docking for low-resolution structures. Protein Eng. 8:371–377.
Vakser, I.A. (1996a). Long-distance potentials: an approach to the multiple-minima problem in ligandreceptor interaction. Protein Eng. 9:37–41.
Vakser, I.A. (1996b). Low-resolution docking: prediction of complexes for underdetermined structures. Biopolymers 39:455–464.
Vakser, I.A. (1996c). Main-chain complementarity in protein-protein recognition. Protein Eng. 9:741–744.
Vakser, I.A. (1997). Evaluation of GRAMM low-resolution docking methodology on the hemagglutininantibody complex. Proteins (Suppl.1):226–230.
Vakser, I.A., and Aflalo, C. (1994). Hydrophobic docking: a proposed enhancement to molecular recognition techniques. Proteins 20:320–329.
Vakser, I.A., and Jiang, S. (2002). Strategies for modeling the interactions of the transmembrane helices of G-protein coupled receptors by geometric complementarity using the GRAMM computer algorithm. Methods Enzymol. 343:313–328.
Vakser, I.A., and Nikiforovich, G.V. (1995). Protein docking in the absence of detailed molecular structures. In: Atassi, M.Z and Appella, E. (eds.), Methods in Protein Structure Analysis. New York, Plenum Press, pp. 505–514.
Vakser, I.A., O.G. Matar, and C.F. Lam. (1999). A systematic study of low-resolution recognition in protein-protein complexes. Proc. Natl. Acad. Sci. USA 96:8477–8482.
Varadarajan, R., P.R. Connelly, J.M. Sturtevant, and F.M. Richards. (1992). Heat capacity changes for protein-peptide interactions in the ribonuclease S system. Biochemistry 31:1421–1426.
Vassilev, L.T., B.T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi, and E.A. Liu. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303:844–848.
Veselovsky, A.V., Y.D. Ivanov, A.S. Ivanov, A.I. Archakov, P. Lewi, and P. Janssen. (2002). Protein-protein interactions: mechanisms and modification by drugs. J. Mol. Recognit. 15:405–422.
Volz, K. (1993). Structural conservation in the CheY superfamily. Biochemistry 32:11741–11753.
Vukmirovic, O.G., and Tilghman, S.M. (2000). Exploring genome space. Nature 405:820–822.
Walther, D., F. Eisenhaber, and P. Argos. (1996). Principles of helix-helix packing in proteins: the helical lattice superposition model. J. Mol. Biol. 255:536–553.
Weiner, S.J., P.A. Kollman, D.A. Case, U.C. Singh, C. Ghio, G. Alagona, J. Salvatore Profeta, and P. Weiner. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106:765–784.
Welch, M., N. Chinardet, L. Mourey, C. Birck, and J.P. Samama. (1998). Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nat. Struct. Biol. 5:25–29.
Williams, D.E. (1988). Representation of the molecular electrostatic potential by atomic multipole and bond dipole models. J. Comput. Chem. 9:745–763.
Williams, D.E. (1991). Net atomic charge and multipole models for the ab initio molecular electric potential. Rev. Comput. Chem. 2:219–271.
Wodak, S.J., and Janin, J. (1978). Computer analysis of protein-protein interactions. J. Mol. Biol. 124:323–342.
Xu, D., C.-J. Tsai, and R. Nussinov. (1997). Hydrogen bonds and bridges across protein-protein interfaces. Protein Eng. 10:999–1012.
Young, L., R.L. Jernigan, and D.G. Covell. (1994). A role for surface hydrophobicity in protein-protein recognition. Protein Sci. 3:717–729.
Yue, K., and Dill, K.A. (2000). Constraint-based assembly of tertiary protein structures from secondary structure elements. Protein Sci. 9:1935–1946.
Zhang, C., J. Chen, and C. DeLisi. (1999). Protein-protein recognition: exploring the energy funnels near the binding sites. Proteins 34:255–267.
Zhang, C., S. Liu, H. Zhou, and Y. Zhou. (2004a). An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state. Protein Sci. 13:400–411.
Zhang, C., S. Liu, and Y. Zhou. (2004b). Accurate and efficient loop selections by the DFIRE-based allatom statistical potential. Protein Sci. 13:391–399.
Zhao, R., E.J. Collins, R.B. Bourret, and R.E. Silversmith. (2002). Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nat. Struct. Biol. 9:570–575.
Zhu, X., K. Volz, and P. Matsumura. (1997). The CheZ-binding surface of CheY overlaps the CheA-and FliM-binding surfaces. J. Biol. Chem. 272:23758–23764.
Zutshi, R., M. Brickner, and J. Chmielewski. (1998). Inhibiting the assembly of protein-protein interfaces. Curr. Opin. Chem. Biol. 2:62–66.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer Science+Business Media, Inc.
About this chapter
Cite this chapter
Marshall, G.R., Vakser, I.A. (2005). Protein-Protein Docking Methods. In: Waksman, G. (eds) Proteomics and Protein-Protein Interactions. Protein Reviews, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-24532-4_6
Download citation
DOI: https://doi.org/10.1007/0-387-24532-4_6
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-24531-7
Online ISBN: 978-0-387-24532-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)