Skip to main content

The Structure and Molecular Interactions of the Bromodomain

  • Chapter
Book cover Proteomics and Protein-Protein Interactions

Part of the book series: Protein Reviews ((PRON,volume 3))

  • 1512 Accesses

Abstract

The bromodomain is a structurally conserved protein module that is present in a large number of chromatin-associated proteins and in many nuclear histone acetyltransferases. The bromodomain functions as an acetyl-lysine binding domain and has recently been shown to play an important role in regulating protein-protein interactions in chromatin-mediated cellular gene transcription as well as in viral transcriptional activation. Recent structural analyses of bromodomains in complex with acetyl-lysine-containing biological ligands provide insights into the molecular basis of differences in ligand selectivity of the bromodomain family, and reinforce the concept that functional diversity of a conserved protein structure is achieved by evolutionary changes of amino acid sequences in the ligand binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasland, R., Gibson, T.J., and Stewart, A.F. (1995). The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20:56–59.

    Article  PubMed  CAS  Google Scholar 

  • Adams, M., Sharmeen, L., Kimpton, J., Romeo, J.M., Garcia, J.V., Peterlin, B.M., Groudine, M., and Emerman, M. (1994). Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts. Proc. Natl. Acad. Sci. USA 91:3862–3866.

    Article  PubMed  CAS  Google Scholar 

  • Agalioti, T., Chen, G., and Thanos, D. (2002). Deciphering the transcriptional histone acetylation code for a human gene. Cell 111:381–392.

    Article  PubMed  CAS  Google Scholar 

  • An, W., Palhan, V.B., Karymov, M.A., Leuba, S.H., and Roeder, R.G. (2002). Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin. Mol. Cell 9:811–821.

    Article  PubMed  CAS  Google Scholar 

  • Baltimore, D. (1981). Gene conversion: some implications for immunoglobulin genes. Cell 24:592–594.

    Article  PubMed  CAS  Google Scholar 

  • Barlev, N.A., Liu, L., Chehab, N.H., Mansfield, K., Harris, K.G., Halazonetis, T.D., and Berger, S.L. (2001). Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8:1243–1254.

    Article  PubMed  CAS  Google Scholar 

  • Benkirane, M., Chun, R.F., Xiao, H., Ogryzko, V.V., Howard, B.H., Nakatani, Y., and Jeang, K.-T. (1998). Activation of integrated provirus requires histone acetyltransferase: p300 and P/CAF are co-activators for HIV-1 Tat. J. Biol. Chem. 273:24898–24905.

    Article  PubMed  CAS  Google Scholar 

  • Bochar, D.A., Savard, J., Wang, W., Lafleur, D.W., Moore, P., Cote, J., and Shiekhattar, R. (2000). A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc. Natl. Acad. Sci. USA 97:1038–1043.

    Article  PubMed  CAS  Google Scholar 

  • Brown, C.E., Howe, L., Sousa, K., Alley, S.C., Carozza, M.J., Tan, S., and Workman, J.L. (2001). Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science 292:2333–2337.

    Article  PubMed  CAS  Google Scholar 

  • Brownell, J.E., and Allis, C.D. (1996). Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev. 6:176–184.

    Article  PubMed  CAS  Google Scholar 

  • Brownell, J.E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D.G., Roth, S.Y., and Allis, C.D. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851.

    Article  PubMed  CAS  Google Scholar 

  • Cairns, B.R., Schlichter, A., Erdjument-Bromage, H., Tempst, P., Kornberg, R.D., and Winston, F. (1999). Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol. Cell 4:715–723.

    Article  PubMed  CAS  Google Scholar 

  • Callebaut, I., Courvalin, J.C., and Mornon, J.P. (1999). The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett. 446:189–193.

    Article  PubMed  CAS  Google Scholar 

  • Chang, L., and Karin, M. (2001). Mammalian MAP kinase signaling cascades. Nature 410:37–40.

    Article  PubMed  CAS  Google Scholar 

  • Chua, P., and Roeder, G.S. (1995). Bdf1, a yeast chromosomal protein required for sporulation. Mol. Cell Biol. 15:3685–3696.

    PubMed  CAS  Google Scholar 

  • Cullen, B.R. (1998). HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93:685–692.

    Article  PubMed  CAS  Google Scholar 

  • Deng, L., Fuente, C.d.l., Fu, P., Wang, L., Donnelly, R., Wade, J.D., Lambert, P., Li, H., Lee, C.-G., and Kashanchi, F. (2000). Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology 277:278–295.

    Article  PubMed  CAS  Google Scholar 

  • Dey, A., Chitsaz, F., Abbasi, A., Misteli, T., and Ozato, K. (2003). The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc. Natl. Acad. Sci. USA 100:8758–8763.

    Article  PubMed  CAS  Google Scholar 

  • Dhalluin, C., Carlson, J.E., Zeng, L., He, C., Aggarwal, A.K., and Zhou, M.-M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496.

    Article  PubMed  CAS  Google Scholar 

  • Du, J., Nasir, I., Benton, B.K., Kladde, M.P., and Laurent, B.C. (1998). Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins. Genetics 150:987–1005.

    PubMed  CAS  Google Scholar 

  • Filetici, P., Aranda, C., Gonzalez, A., and Ballario, P. (1998). GCN5, a yeast transcriptional co-activator, induces chromatin reconfiguration of HIS3 promotor in vivo. Biochem. Biophys. Res. Commun. 242:84–87.

    Article  PubMed  CAS  Google Scholar 

  • Fischle, W., Wang, Y., and Allis, C.D. (2003). Binary switches and modification cassettes in histone biology and beyond. Nature 425:475–479.

    Article  PubMed  CAS  Google Scholar 

  • Garber, M.E., and Jones, K.A. (1999). HIV-1 Tat: coping with negative elongation factors. Curr. Opin. Immunol. 11:460–465.

    Article  PubMed  CAS  Google Scholar 

  • Georgakopoulos, T., Gounalaki, N., and Thireos, G. (1995). Gentic evidence for the interaction of the yeast transcriptional co-activator proteins GCN5 and ADA2. Mol. Gen. Genet. 246:723–728.

    Article  PubMed  CAS  Google Scholar 

  • Greenwald, R.J., Tumang, J.R., Sinha, A., Currier, N., Cardiff, R.D., Rothstein, T.L., Faller, D.V., and Denis, G.V. (2004). E mu-RD2 transgenic mice develop B-cell lymphoma and leukemia. Blood 103:1475–1484.

    Article  PubMed  CAS  Google Scholar 

  • Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature 389:349–352.

    Article  PubMed  CAS  Google Scholar 

  • Gu, W., and Roeder, R.G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.

    Article  PubMed  CAS  Google Scholar 

  • Hajduk, P.J., Measdows, R.P., and Fesik, S.W. (1999). NMR-based screening in drug discovery. Q. Rev. Biophys. 32:211–240.

    Article  PubMed  CAS  Google Scholar 

  • Hassan, A.H., Prochasson, P., Neely, K.E., Galasinski, S.C., Chandy, M., Carrozza, M.J., and Workman, J.L. (2002). Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111:369–379.

    Article  PubMed  CAS  Google Scholar 

  • Haynes, S.R., Dollard, C., Winston, F., Beck, S., Trowsdale, J., and Dawid, I.B. (1992). The bromodomain: a conserved sequence found in human, Drosophia and yeast proteins. Nucleic Acids Res. 20:2603–2603.

    PubMed  CAS  Google Scholar 

  • Hottiger, M.O., and Nabel, G.J. (1998). Interaction of human immunodeficiency virus type 1 Tat with the transcriptional coactivators p300 and CREB binding protein. J. Virol. 72:8252–8256.

    PubMed  CAS  Google Scholar 

  • Hudson, B.P., Martinez-Yamout, M.A., Dyson, H.J., and Wright, P.E. (2000). Solution structure and acetyllysine binding activity of the GCN5 bromodomain. J. Mol. Biol. 304:355–370.

    Article  PubMed  CAS  Google Scholar 

  • Ito, A., Lai, C.H., Zhao, X., Saito, S., Hamilton, M.H., Appella, E., and Yao, T.P. (2001). p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20:1331–1340.

    Article  PubMed  CAS  Google Scholar 

  • Ito, A., Kawaguchi, Y., Lai, C.H., Kovacs, J.J., Higashimoto, Y., Appella, E., and Yao, T.P. (2002). MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 21:6236–6245.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, R.H., Ladurner, A.G., King, D.S., and Tjian, R. (2000). Structure and function of a human TAFII250 double bromodomain module. Science 288:1422–1425.

    Article  PubMed  CAS  Google Scholar 

  • Jeang, K.-T., Xiao, H., and Rich, E.A. (1999). Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J. Biol. Chem. 274:28837–28840.

    Article  PubMed  CAS  Google Scholar 

  • Jeanmougin, F., Wurtz, J.M., Le Douarin, B., Chambon, P., and Losson, R. (1997). The bromodomain revisited. Trends Biochem. Sci. 22:151–153.

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293:1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • John, S., and Workman, J.L. (1998). Just the facts of chromatin transcription. Science 282:1836–1837.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, G.L., and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912.

    Article  PubMed  CAS  Google Scholar 

  • Kanno, T., Kanno, Y., Siegel, R.M., Jang, M.K., Lenardo, M.J., and Ozato, K. (2004). Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell 13:33–43.

    Article  PubMed  CAS  Google Scholar 

  • Karn, J. (1999). Tackling Tat. J. Mol. Biol. 293:235–254.

    Article  PubMed  CAS  Google Scholar 

  • Keyse, S.M. (2000). Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr. Opin. Cell. Biol. 12:186–192.

    Article  PubMed  CAS  Google Scholar 

  • Kiernan, R.E., Vanhulle, C., Schiltz, L., Adam, E., Xiao, H., Maudoux, F., Calomme, C., Burny, A., Nakatani, Y., Jeang, K.-T., and Van Lint. C. (1999). HIV-1 Tat transcriptional activity is regulated by acetylation. EMBO J. 18:6106–6118.

    Article  PubMed  CAS  Google Scholar 

  • Ladurner, A.G., Inouye, C., Jain, R., and Tjian, R. (2003). Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol. Cell 11:365–376.

    Article  PubMed  CAS  Google Scholar 

  • Letunic, I., Goodstadt, L., Dickens, N.J., Doerks, T., Schultz, J., Mott, R., Ciccarelli, F., Copley, R.R., Ponting, C.P., and Bork, P. (2002). Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30:242–244.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Luo, J., Brooks, C.L., and Gu, W. (2002). Acetylation of p53 inhibits its ubiquitination by Mdm2. J. Biol. Chem. 277:50607–50611.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L., Scolnick, D.M., Trievel, R.C., Zhang, H.B., Marmorstein, R., Halazonetis, T.D., and Berger, S.L. (1999). p53 sites acetylated in vitro by P/CAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell Biol. 19:1202–1209.

    PubMed  CAS  Google Scholar 

  • Lu, X., Meng, X., Morris, C.A., and Keating, M.T. (1998). A novel human gene, WSTF, is deleted in Williams syndrome. Genomics 54:241–249.

    Article  PubMed  CAS  Google Scholar 

  • Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260.

    Article  PubMed  CAS  Google Scholar 

  • Manning, E.T., Ikehara, T., Ito, T., Kadonaga, J.T., and Kraus, W.L. (2001). p300 forms a stable, templatecommitted complex with chromatin: role for the bromodomain. Mol. Cell Biol. 21:3876–3887.

    Article  PubMed  CAS  Google Scholar 

  • Marcus, G.A., Silverman, N., Berger, S.L., Horiuchi, J., and Guarente, L. (1994). Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J. 13:4807–4815.

    PubMed  CAS  Google Scholar 

  • Matangkasombut, O., and Buratowski, S. (2003). Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol. Cell 11:353–363.

    Article  PubMed  CAS  Google Scholar 

  • Matangkasombut, O., Buratowski, R.M., Swilling, N.W., and Buratowski, S. (2000). Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev. 14:951–962.

    PubMed  CAS  Google Scholar 

  • Mizzen, C., Kuo, M.-H., Smith, E., Brownell, J., Zhou, J., Ohba, R., Wei, Y., Monaco, L., Sassone-Corsi, P., and Allis, C.D. (1998). Signaling to chromatin through histone modifications: How clear is the signal? Cold Spring Harbor Symp. Quant. Biol. LXIII:469–481.

    Article  Google Scholar 

  • Muchardt, C., and Yaniv, M. (1999). The mammalian SWI/SNF complex and the control of cell growth. Semin. Cell Dev. Biol. 10:189–195.

    Article  PubMed  CAS  Google Scholar 

  • Muchardt, C., Bourachot, B., Reyes, J.C., and Yaniv, M. (1998). ras transformation is associated with decreased expression of the brm/SNF2alpha ATPase from the mammalian SWI-SNF complex. EMBO J. 17:223–231.

    Article  PubMed  CAS  Google Scholar 

  • Mujtaba, S., He, Y., Zeng, L., Farooq, A., Carlson, J.E., M. Ott, Verdin, E., and Zhou, M.-M. (2002). Structural basis of lysine-acetylated HIV-1 Tat recognition by P/CAF bromodomain. Mol. Cell 9:575–586.

    Article  PubMed  CAS  Google Scholar 

  • Mujtaba, S., He, Y., Zeng, L., Yan, S., Plotnikova, O., Sanchez, R., Zeleznik-Le, N., Ronai, Z., and Zhou, M.-M. (2004). Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol. Cell 13:251–263.

    Article  PubMed  CAS  Google Scholar 

  • Ott, M., Schnolzer, M., Garnica, J., Fischle, W., Emiliani, S., Rackwitz, H.-R., and Verdin, E. (1999). Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr. Biol. 9:1489–1492.

    Article  PubMed  CAS  Google Scholar 

  • Owen, D.J., Ornaghi, P., Yang, J.C., Lowe, N., Evans, P.R., Ballario, P., Neuhaus, D., Eiletici, P., and Travers, A.A. (2000). The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J. 19:6141–6149.

    Article  PubMed  CAS  Google Scholar 

  • Pawson, T., and Nash, P. (2003). Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452.

    Article  PubMed  CAS  Google Scholar 

  • Polesskaya, A., Naguibneva, I., Duquet, A., Bengal, E., Robin, P., and Harel-Bellan, A. (2001). Interaction between acetylated MyoD and the bromodomain of CBP and/or p300. Mol. Cell Biol. 21:5312–5320.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi, K., Herrera, J.E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C.W., and Appella, E. (1998). DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12:2831–2841.

    PubMed  CAS  Google Scholar 

  • Schlessinger, J., and Lemmon, M.A. (2003). SH2 and PTB domains in tyrosine kinase signaling. Sci. STKE 2003:RE12.

    Article  PubMed  Google Scholar 

  • Schultz, D.C., Friedman, J.R., and Rauscher, F.J., 3rd (2001). Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev. 15:428–443.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, J., Milpetz, F., Bork, P., and Ponting, C.P. (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95:5857–5864.

    Article  PubMed  CAS  Google Scholar 

  • Sterner, D.E., Grant, P.A., Roberts, S.M., Duggan, L.J., Belotserkovskaya, R., Pacella, L.A., Winston, F., Workman, J.L., and Berger, S.L. (1999). Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell Biol. 19:86–98.

    PubMed  CAS  Google Scholar 

  • Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403:41–45.

    Article  PubMed  CAS  Google Scholar 

  • Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12:599–606.

    PubMed  CAS  Google Scholar 

  • Syntichaki, P., Topalidou, I., and Thireos, G. (2000). The Gcn5 bromodomain coordinates nucleosome remodelling. Nature 404:414–417.

    Article  PubMed  CAS  Google Scholar 

  • Tamkun, J.W., Deuring, R., Scott, M.P., Kissinger, M., Pattatucci, A.M., Kaufman, T.C., and Kennison, J.A. (1992). brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68:561–572.

    Article  PubMed  CAS  Google Scholar 

  • Travers, A. (1999). Chromatin modification: how to put a HAT on the histones. Curr. Biol. 9:23–25.

    Article  Google Scholar 

  • Turner, B.M. (2002). Cellular memory and the histone code. Cell 111:285–291.

    Article  PubMed  CAS  Google Scholar 

  • Wei, P., Garber, M.E., Fang, S.M., Fischer, W.H., and Jones, K.A. (1998). Anovel CDK9-associated C-type cyclin interacts with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462.

    Article  PubMed  CAS  Google Scholar 

  • Winston, F., and Allis, C.D. (1999). The bromodomain: a chromatin-targeting module? Nat. Struct Biol. 6:601–604.

    Article  PubMed  CAS  Google Scholar 

  • Wolffe, A.P., and Hayes, J.J. (1999). Chromatin disruption and modification. Nucleic Acids Res. 27:711–720.

    Article  PubMed  CAS  Google Scholar 

  • Yan, K.S., Kuti, M., Mujtaba, S., Farooq, A., Goldfarb, M.P., and Zhou, M.-M. (2002a). SNT PTB domain conformation regulates interactions with divergent neurotrophic receptors. J. Biol. Chem. 277:17088–17094.

    Article  PubMed  CAS  Google Scholar 

  • Yan, K.S., Kuti, M., and Zhou, M.-M. (2002b). PTB or not PTB—that is the question. FEBS Lett. 513:67–70.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, L., and Zhou, M.-M. (2001). Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 513:124–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Yan, K.S., Zhou, MM. (2005). The Structure and Molecular Interactions of the Bromodomain. In: Waksman, G. (eds) Proteomics and Protein-Protein Interactions. Protein Reviews, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-24532-4_10

Download citation

Publish with us

Policies and ethics