Advertisement

The Nature of Chance and Probability

  • Carmen Batanero
  • Michel Henry
  • Bernard Parzysz
Part of the Mathematics Education Library book series (MELI, volume 40)

Keywords

Original Work Sample Space Compound Event Probability Problem Probability Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batanero, C., Serrano, L., & Green, D. R. (1998). Randomness, its meanings and educational implications. International Journal for Mathematics Education in Science and Technology, 29(1), 11–123.Google Scholar
  2. Bellhouse, D. R. (2000). De Vetula: a medieval manuscript containing probability calculations. International Statistical Review, 68(2), 123–136.Google Scholar
  3. Bennett, D. J. (1993). The development of the mathematical concept of randomness; educational implications (Doctoral dissertation, New York University, 1993). Dissertation Abstracts International, 54,449A.Google Scholar
  4. Bernoulli, Jacques (1987). Ars Conjectandi-4ème partie (N. Meunier, Trans.) Rouen: IREM. (Original work published in 1713).Google Scholar
  5. Borel, E. (1909). Presque tous les nombres réels sont normaux [Almost all the real numbers are normal]. Rendiconti del Circulo Matemático di Palermo, 27, 247–271.Google Scholar
  6. Borel, E. (1991). Valeur pratique et philosophie des probabilités [Practical and philosophical value of probability]. Paris: Jacques Gabay (Original work published in 1930).Google Scholar
  7. Borovcnik, M., Bentz, H. J., & Kapadia, R. (1991). A probabilistic perspective. In R. Kapadia & M. Borovcnik (Eds.), Chance Encounters: Probability in Education (pp. 27–73). Dordrecht: Kluwer.Google Scholar
  8. Borovcnik, M., & Peard, R. (1996). Probability. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook in mathematics education (Part 1, pp. 239–288). Dordrecht: Kluwer.Google Scholar
  9. Bruner, J. S. (1960). The process of education. Cambridge, MA: Harvard University Press.Google Scholar
  10. Cabriá, S. (1992). Filosofia de la probabilidad [Philosophy of probability]. Valencia, Spain: Tirant lo Blanc.Google Scholar
  11. Cardano, G. (1961). The book on games of chances. New York: Holt, Rinehart & Winston. (Original work Liber de Ludo Aleae; included in Opera Omnia, Vol.1, published in 1663).Google Scholar
  12. Chaitin, G. J. (1975). A theory of program size formally identical to information theory. Journal of the Association for Computing Machinery, 22, 329–340.Google Scholar
  13. Courtebras, B. (2001). Sur quelques conceptions du hasard [Regarding some conceptions of chance]. In M. Henry (Coord.), Autour de la modélisation en probabilités (pp. 95–132). Commission Inter-IREM Statistique et Probabilités, Besançon: Presses Universitaires Franc-Comtoises.Google Scholar
  14. De Finetti, B. (1974). Theory of probability. London: John Wiley.Google Scholar
  15. Delahaye, J. P. (1999). Information complexité et hasard [Information, complexity and chance] (2nd ed.). Paris: Hermes Science Publications.Google Scholar
  16. Diderot, D. (1983). Jacques le Fataliste [Jacques the Fatalist]. Paris: Le Livre de Poche (Original work published 1796).Google Scholar
  17. Edwards, A. (1987). Pascal's arithmetical triangle. London: Oxford University & Charles Griffin.Google Scholar
  18. Feller, W. (1950). An introduction to probability theory and its applications (Vol. 1). New York: John Wiley.Google Scholar
  19. Fermat, P. (1989). Précis des œuvres mathématiques. Paris: Jacques Gabay (Original work published 1853).Google Scholar
  20. Fine, T. L. (1971). Theories of probability. An examination of foundations. London: Academic Press.Google Scholar
  21. Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht, The Netherlands: Reidel.Google Scholar
  22. Fischbein, E., Nello, M. S., & Marino, M. S. (1991). Factors affecting probabilistic judgments in children in adolescence. Educational Studies in Mathematics, 22, 523–549.CrossRefGoogle Scholar
  23. Girard, J. C. (1997). Modélisation, simulation et expérience aléatoire [Modeling, simulation and random experience], In Enseigner les probabilités au lycée (pp. 73–76). Reims: Commission Inter-IREM Statistique et Probabilités.Google Scholar
  24. Gnedenko, B. V., & Kolmogorov, A. N. (1954). Limit distributions for sums of independent random variables (K. L. Chung, Trans.). Cambridge, MA: Addison-Wesley.Google Scholar
  25. Hacking, I. (1975). The emergence of probability. Cambridge, MA: Cambridge University Press.Google Scholar
  26. Heitele, D. (1975). An epistemological view on fundamental stochastic ideas. Educational Studies in Mathematics, 6, 187–205.CrossRefGoogle Scholar
  27. Henry, M. (1997a). Notion de modèle et modélisation dans l'enseignement [Notion of model and modeling in teaching]. In Enseigner les probabilités au lycée (pp. 77–84). Reims: Commission Inter-IREM Statistique et Probabilités.Google Scholar
  28. Henry, M. (1997b). L'enseignement des statistiques et des probabilités [Teaching of statistics and probability]. In P. Legrand (Coord.), Profession enseignant: Les maths en collège et en lycée (pp. 254–273). Paris: Hachette-Éducation.Google Scholar
  29. Henry, M. (2001). (Coord.), Autour de la modélisation en probabilités [Around modeling in probability]. Besançon: Presses Universitaires Franc-Comtoises.Google Scholar
  30. Huygens, C. (1998). Du calcul dans les jeux de hazard [The calculus in games of chance]. In Œuvres complètes, t. 14, La Haye, 1888–1950. (Original work Ratiociniis in Aleae Ludo, published 1657).Google Scholar
  31. Jones, G. A., Langrall, C. W., Thornton, C. A., & Mogill, A. T. (1999). Student's probabilistic thinking in instruction. Journal for Research in Mathematics Education, 30(5), 487–519.CrossRefGoogle Scholar
  32. Kahneman, D., Slovic, P., & Tversky, A. (Eds.), Judgement under uncertainty: Heuristics and biases. New York: Cambridge University Press.Google Scholar
  33. Keynes, J. M. (1921). A treatise on probability. London: Macmillan.Google Scholar
  34. Kojeve, A. (1990). L'idée du déterminisme dans la physique classique et dans la physique moderne [The idea of determinism in classical and modern physique]. Paris: Librairie Générale Française, le Livre de Poche-essais (Original work published 1932).Google Scholar
  35. Kolmogorov, A. (1950). Foundations of probability's calculation. New York: Chelsea Publishing Company (Original work, Grundbegriffe der wahrscheinlichkeitsrechnung, published 1933).Google Scholar
  36. Konold, C. (1989). Informal conceptions of probability. Cognition and Instruction, 6, 59–98.CrossRefGoogle Scholar
  37. Kyburg, H. E. (1974). The logical foundations of statistical inference. Boston: Reidel.Google Scholar
  38. Lahanier-Reuter, D. (1999). Conceptions du hasard et enseignement des probabilités statistiques [Conceptions of chance and teaching of statistics and probability]. París: Presses Universitaires de France.Google Scholar
  39. Laplace, P. S. (1986). Essai Philosophique sur les Probabilités [Philosophical essay on Probabilities]. Paris: Christian Bourgois (Fifth edition of the original work, published 1825).Google Scholar
  40. Laplace P. S. (1995). Théorie analytique des probabilités [Analytical theory of probabilities]. Paris: Jacques Gabay. (Original work published 1814).Google Scholar
  41. Leibniz, G. W. (1969). Théodicée. Paris: Garnier-Flammarion (original work published 1710).Google Scholar
  42. Leibniz, G. W. (1995). L'estime des apparences [The estimation of appearance]. In M. Parmentier (Ed.), 21 manuscrits sur les probabilités, la théorie des jeux, l'espérance de vie. Paris: Vrin (Original work published 1676).Google Scholar
  43. Martin-Löf, P. (1966). The definition of random sequences. Information and Control, 9, 602–619.Google Scholar
  44. Mises, R. von (1952). Probability, statistics and truth (J. Neyman, O. Scholl, & E. Rabinovitch, Trans.). London: William Hodge and company. (Original work published 1928).Google Scholar
  45. Moivre, A. de (1967). The Doctrine of Chances (3rd ed.). New York: Chelsea Publishing (Original work published 1718).Google Scholar
  46. Monod, J. (1970). Le hasard et la nécessité, essai sur la philosophie naturelle de la biologie moderne [Chance and necessity, an essay on natural philosophy in modern biology]. Paris: Editions du Seuil.Google Scholar
  47. Morin, E. (1990): Science avec conscience [Science with conscience]. Paris: Editions du Seuil, Points Sciences.Google Scholar
  48. Parzysz B. (2004). Quelques questions à propos des tables et des générateurs pseudo-aléatoires [Some questions about pseudo random numbers, tables, and generators]. In B. Chaput (Coord.), Statistique au lycée. Paris: Commission Inter-IREM & APMEP.Google Scholar
  49. Pascal, B. (1963a). Correspondance avec Fermat [Correspondence with Fermat]. In Oeuvres Complètes (pp. 43–49). París: ed. Seuil. (Original letter 1654).Google Scholar
  50. Pascal, B. (1963b). Traité du triangle arithmétique [A treatise on the arithmetical triangle]. In Oeuvres Complètes (pp. 57–62). París: ed. Seuil. (Original work published 1654).Google Scholar
  51. Piaget, J. & Inhelder, B. (1975). The origin of the idea of chance in children. (L. Leake Jr., P; Burrell, & H. D. Fischbein, Trans.). New York: Norton. (Original work published 1951)Google Scholar
  52. Pichard, J. F. (2001). Les probabilités au tournant du XVIIIe siècle [Probability at the beginning of XVIII century]. In M. Henry (Coord.), Autour de la modélisation en probabilités (pp. 13–46). Besançon: Presses Universitaires Franc-Comtoises.Google Scholar
  53. Poincaré, H. (1987). Calcul des probabilités [Probability calculus]. Paris: Jacques Gabay (Original work published 1912).Google Scholar
  54. Popper, K. (1959). The propensity interpretation of probability. British Journal of Philosophy of Science, 10, 25–42.Google Scholar
  55. Prigogine, I., & Steengers, I. (1979). La nouvelle alliance [The new alliance]. Paris: Gallimard, Folio Essais.Google Scholar
  56. Ramsey, F. (1931). Truth and probability. In R. B. Braithwaite (Ed.), The foundations of mathematics and other logical essays (pp 156–198). London: Kegan Paul.Google Scholar
  57. Renyi, A. (1992). Calcul des probabilités [Probability calculus] (L. Félix, Trans.) Paris: Jacques Gabay (Original work published 1966) Ruelle, D., (1991). Hasard et chaos [Randomness and chaos]. Paris: Odile Jacob.Google Scholar
  58. Saporta, G. (1992). Probabilités, analyse des données et statistiques [Probability, data analysis and statistics]. Paris: Technip.Google Scholar
  59. Shaughnessy, J. M. (1983). Misconceptions of probability, systematic and otherwise: Teaching probability and statistics so as to overcome some misconceptions. In D. R. Grey, P. Holmes, V. Barnett, & G. M. Constable (Eds.), Proceedings of the First International Conference on Teaching Statistics (pp. 784–801). Sheffield, UK: Teaching Statistics Trust.Google Scholar
  60. Shaughnessy, J. M. (1992). Research in probability and statistics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 465–494). New York: Macmillan.Google Scholar
  61. Székely, G. J. (1986). Paradoxes in probability theory and mathematical statistics. Dordrecht, The Netherlands: Reidel.Google Scholar
  62. Thom, R. (1986). Preface. In Édition of P. S. Laplace, Essai philosophique sur les probabilités, (pp. 5–27). Paris: Christian Bourgois, Épistémé.Google Scholar
  63. Thom, R. (1990). Postface au débat sur le déterminisme [Postface to the determinism debate]. In P. Krzysztof (Ed.), La querelle du déterminisme, Philosophie de la science d'aujourd'hui (pp. 266–279), Paris: Gallimard, Le débat.Google Scholar
  64. Truran, J. M. (1996). Children's misconceptions about the independence of random generators. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th conference of the International Group for the Psychology of Mathematics Education (pp. 331–338). University of Valencia, Spain.Google Scholar
  65. Ventsel, H. (1973). Théorie des probabilités (Probability theory). Moscow: Mir.Google Scholar
  66. Zabell, S. L. (1992). The quest for randomness and its statistical applications. In F. Gordon & S. Gordon (Eds.), Statistics for the XXI Century (pp. 139–166). Washington, DC: The Mathematical Association of America.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Carmen Batanero
  • Michel Henry
  • Bernard Parzysz

There are no affiliations available

Personalised recommendations