Where We Stand on Mercury Pollution and its Health Effects on Regional and Global Scales

  • Nicola Pirrone
  • Kathryn R. Mahaffey
Chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agency for Toxic Substances and Disease Registry (US). Toxicological profile for mercury. Atlanta: Centers for Disease Control and Prevention. (http://www.atsdr.cdc.gov/toxprofiles/tp46.html)Google Scholar
  2. Amyot, M., Gill, G.A., Morel, F.M.M. Production and loss of dissolved gaseous mercury in coastal sea water. Env. Sci. Technol., 31, 3606–3611, 1997.CrossRefGoogle Scholar
  3. Barr, J.F. Population dynamics of the common loon (Garvia immer) associated with mercury-contaminated waters in north-wester Ontario. Occasional Paper 56. Canadian Wildlife Service, Ottawa, Ontario. Canada.Google Scholar
  4. Berg, T., Sekkesæter, S., Steinnes, E., Valdal, A-K., Wibetoe, G. Arctic springtime depletion of mercury in the European Arctic as observed at Svalbard.. Sci. Tot. Env., 304, 43–51, 2003.CrossRefGoogle Scholar
  5. Drevnick, P.E., Sanheinrich M.R. Effects of dietary methylmercury on reproductive endocrinology of fathead minnows. Env. Sci Technol.; 37,4390–96,2003.CrossRefGoogle Scholar
  6. Ebinghaus, R., Kock, H.H, Temme, C., Einax, J.W., Lowe, A.G., Richter, A., Burrows, J.P., Schroeder, W.H. Antarctic springtime depletion of atmospheric mercury. Env. Sci. Technol., 36, 1238–1244, 2002.CrossRefGoogle Scholar
  7. European Commission (EC) Consultation Document on Development of an EU Mercury Strategy, EC-DG Environment (ENV.G., ENV.G.2), draft released on 15 March 2004.Google Scholar
  8. Fimreite, N. Mercury contamination of aquatic birds in northwestern Ontario. J. Wildlife Management, 38, 120–131, 1974.CrossRefGoogle Scholar
  9. Food and Agriculture Organization of the United Nations. World Health Organization. Joint FAO/WHO Expert Committee on Food Additives. Summary and Conclusions of the Sixth-First meeting. 10-19 June 2003. <ftp://ftp.fao.org/es/esn/jecfa/jecfa/jecfa61sc.pdf>Google Scholar
  10. Friedmann, A.S., Watzin, M.C., Brinck-Johnsen, T., Leiter, J.C. Low levels of dietary methylmercury inhibit growth and gonadal development in juvenile walleye (Stizostedion vitreum). Aquatic Toxicology, 35, 265–278, 1996.CrossRefGoogle Scholar
  11. Guallar, E., Sam-Gallardo, M.I., van’t Veer, P., Bode, P., Aro, A., Gomez-Aracena, J., Kark, J.D., Riemersma, R.A., Math-Moreno, J.M., Kok, F.J. Heavy Metals and Myocardial Infarction Study Group. Mercury fish soils, and the risk of myocardial infarction. New England J. Medicine, 347, 1747–54, 2002.CrossRefGoogle Scholar
  12. Hammerschmidt, C.R., Sandheinrich, M.B., Wiener J.G., Rada R.G. Effects of dietary methylmercury on reproduction of fathead minnows. Env. Sci Technol. 36, 877–83, 2002.CrossRefGoogle Scholar
  13. Harada Y. Congenital Minamata Disease. In: Tsubaki T., Irukayama K. Editors. Minamata Disease. Elsevier, Amsterdam, 209–39, 1977.Google Scholar
  14. Health Protection Branch, Bureau of Chemical Safety (Canada). Review of the Tolerable Daily Intake for Methylmercury. Ottawa: Health Canada: 1998 Apr 27.Google Scholar
  15. Hedgecock, I., Pirrone, N., Sprovieri, F., Pesenti, E. Reactive Gaseous Mercury in the Marine Boundary Layer: Modeling and Experimental Evidence of its Formation in the Mediterranean. Atmos. Environ., 37, Sl, 41–50, 2003.CrossRefGoogle Scholar
  16. Hedgecock, I.M., Pirrone, N. Chasing Quicksilver: Modeling the Atmospheric Lifetime of Hg0 (g) in the Marine Boundary Layer at Various Latitudes. Env. Sci. Technol., 38, 69–76. 2004.CrossRefGoogle Scholar
  17. Henny C.J., Hill, E.F., Hoffman, D.J., Spalding, M.G., Grove, R.A. Nineteenth century mercury: hazard to wading birds and cormorants of the Carson River, Nevada. Ecotoxicology, 11, 213–31, 2002.CrossRefGoogle Scholar
  18. Hintelmann, H.; Falter, R.; Ilgen, G., Evans, R.D. Determination of artifactual formation of monomethylmercury in environmental samples using stable Hg(II) isotopes with ICP/MS detection: calculation of contents applying species specific isotope addition. Fresenius J. Anal. Chem., 358, 363–370, 1997.CrossRefGoogle Scholar
  19. Horvat, M., Kotnik, J., Fajon, V., Logar, M., Zvonaric, T., Pirrone, N. Speciation of Mercury in Waters of the Mediterranean Sea. In: Mat. Geoenv., Hines, M., Horvat, M., Faganeli, J. (Editors). Proceedings of the International Workshop on Mercury in the Northern Adriatic Sea, May 13-15, 2001, Portoroz, Slovenia, Vol. 48, 241–252, 2001.Google Scholar
  20. Horvat, M., Kotnik, J., Fajon, V., Logar, M., Zvonaric, T., Pirrone, N. Speciation of Mercury in Surface and Deep Seawater in the Mediterranean Sea. Atmos. Environ., 37, S1, 93–108, 2003.CrossRefGoogle Scholar
  21. IARC Evolution of Carcinogenic Risk to Humans. Vol. 58. Mercury and Mercury Compounds. Lyon, France, 1994.Google Scholar
  22. IOM (Institute of Medicine). National Academy of Sciences. Dietary fats, total fats, and fatty acids. In: dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fatty Acids, Cholesterol, Protein, and Amino Acids. Part 1. Summary and Chapters 1 through 9. Food and Nutrition Board. Panel on Macronutrients. National Academy Press. Washington, D.C. pp. 8-1–9-97 (prepublication copy; unedited proofs) (Chapter 8), 2002.Google Scholar
  23. Keeler, G.J., Glinsorn, G., Pirrone, N. Particulate Mercury in the Atmosphere: Its Significance, Transport, Transformation and Sources. Water, Air Soil Pollut., 80, 159–168, 1995.CrossRefGoogle Scholar
  24. Kommission “Human-Biomonitoring” des Umweltbundesamtes. Stoffmonographie Quecksilver-Referenz-und-Human-Biomonitong-Werte (HBM). Berlin. Komission “Human-Biomonitoring” des Umweltbundesamtes, 1999.Google Scholar
  25. Landis, M.S., Stevens, R.K., Shaedlich, F., Prestbo, D.E.M. Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Env. Sci. Technol., 36,3000–3009, 2002.CrossRefGoogle Scholar
  26. Lee, Y.H., Wangberg, I., Munthe, J. Sampling and analysis of gas-phase methylmercury in ambient air. Sci. Tot. Env. 304, 107–113, 2003.CrossRefGoogle Scholar
  27. Lindberg, S.E., Brooks, S., Lin, C.J., Scott, K.J., Landis, M.S., Stevens, R. K., Goodsite, M., Richter, A. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Env. Sci. Technol., 36, 1245–1256, 2002b.CrossRefGoogle Scholar
  28. Lu, J. Y., Schroeder, W. H., Barrie, L. A., Steffen, A., Welch, H. E., Martin, K., Lockhart, L., Hunt, R. V., Boila, G., Richter, A., Magnification of atmospheric mercury deposition to polar regions in springtime: the link to tropospheric ozone depletion chemistry. Geophy. Res. Lett. 28, 3219–3222, 2001.CrossRefGoogle Scholar
  29. Mahaffey, KR. Fish and shellfish as dietary sources of methylmercury and the ω-3 fatty acids, eicosahexaenoic acid and docosahexaenoic acid: risks and benefits. Environ. Res. 95, 414–428, 2004.CrossRefGoogle Scholar
  30. Mason, R.P., Lawson, N.M., Sheu, G.R. Mercury in the Atlantic Ocean: factors controlling air-sea exchange of mercury and its distribution in the upper waters. Deep-Sea Research II, 48, 2829–2853, 2001.CrossRefGoogle Scholar
  31. Mason, R.P.; Sheu, G.-R. Global Biogeochem. Cycles, 16, 1093, doi:10.10229/2001 GB001440, 2002.CrossRefGoogle Scholar
  32. Munthe, J., Wangberg, I., Pirrone, N., Iverfeld, A., Ferrara, R., Ebinghaus, R., Feng., R., Gerdfelt, K., Keeler, G.J., Lanzillotta, E., Lindberg, S.E., Lu, J., Mamane, Y., Prestbo, E., Schmolke, S., Schroder, W.H., Sommar, J., Sprovieri, F., Stevens, R.K., Stratton, W., Tuncel, G., Urba, A. Intercomparison of Methods for Sampling and Analysis of Atmospheric Mercury Species. Atmos. Environ., 35, 3007–3017, 2001.CrossRefGoogle Scholar
  33. Piomelli S, Seaman, C, Zullow, D, Curran, A, Davidow, B. Threshold for lead damage to heme synthesis in urban children. Proc Natl Acad Sci USA. 79, 3335–39, 1982.CrossRefGoogle Scholar
  34. Pirrone, N., Keeler, G.J., Nriagu, J.O. Regional Differences in Worldwide Emissions of Mercury to the Atmosphere. Atmos. Env., 30, 2981–2987, 1996.CrossRefGoogle Scholar
  35. Pirrone, N., Hedgecock, I., Forlano, L. The Role of the Ambient Aerosol in the Atmospheric Processing of Semi-Volatile Contaminants: A Parameterised Numerical Model (GASPAR). J. Geophys. Res., 105, D8, 9773–9790, 2000.CrossRefGoogle Scholar
  36. Pirrone, N., Munthe, J., Barregård, L., Ehrlich, H.C., Petersen, G., Fernandez, R., Hansen, J.C., Grandjean, P., Horvat, M., Steinnes, E., Ahrens, R., Pacyna, J.M., Borowiak, A., Boffetta, P., Wichmann-Fiebig, M. EU Ambient Air Pollution by Mercury (Hg) — Position Paper. Office for Official Publications of the European Communities, 2001.Google Scholar
  37. Pirrone, N., Costa, P., Pacyna, J.M., Ferrara, R. Atmospheric Mercury Emissions from Anthropogenic and Natural Sources in the Mediterranean Region. Atmos. Environ., 35, 2997–3006, 2001a.CrossRefGoogle Scholar
  38. Pirrone, N., Pacyna, J.M., Barth, H. Atmospheric Mercury Research in Europe. Special Issue of Atmospheric Environment, volume 35(17), Elsevier Science, Amsterdam, Netherlands, 2001b.Google Scholar
  39. Pirrone, N., Ferrara, R., Hedgecock, I.M., Kallos. G., Mamane, Y., Munthe, J., Pacyna, J.M., Pytharoulis, I., Sprovieri, F., Voudouri, A., Wangberg, I. Dynamic Processes of Atmospheric Mercury Over the Mediterranean Region. Atmos. Environ., 37, S1, 21–40, 2003a.CrossRefGoogle Scholar
  40. Pirrone, N., Pacyna, J.M., Munthe, J., Barth, H. Dynamic Processes of Mercury and Other Atmospheric Contaminants in the Marine Boundary Layer of European Seas. Special Issue of Atmospheric Environment, volume 37(S1), Elsevier Science, Amsterdam, Netherlands, 2003b.Google Scholar
  41. Reference Dose/Reference Concentration (RfD/RfC) Technical Panel. Risk Assessment Forum. A Review of the Reference Dose and Reference Concentration Processes. EPA/630/P-02/002F. December 2002. Final Report. http://cfpub2.epa.gov/ncea/raf/Google Scholar
  42. Rice D, Barone, S. Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect, 108(Suppl 3), 511–33, 2000.Google Scholar
  43. Salonen, J.T., Seppanen, K., Nyyssonen, K., Korpela, H., Kauhanen, J., Kantol, M., Tuomilehto, J., Esterbauer H., Tatzber F., Salonen, R. Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. Circulation, 91, 645–55, 1995.Google Scholar
  44. Schroeder, W. H., Anlauf, K.G., Barrie, L.A., Lu, J.Y., Steffen, A. Arctic springtime depletion of mercury. Nature 394, 331–332, 1998.CrossRefGoogle Scholar
  45. Skov, H. Personal communication, NERI, Denmark, 2002.Google Scholar
  46. Sprovieri, F., Pirrone, N. A Preliminary Assessment of Mercury Levels in the Antarctic and Arctic Troposphere. J. Aerosol. Sci., 31, 757–758, 2000.CrossRefGoogle Scholar
  47. Sprovieri, F., Pirrone, N., Hedgecock, I. M., Landis, M., Stevens, B, K. Intensive atmospheric mercury measurements at Terra Nova Bay in Antarctica during November and December 2000. J. Geophys. Res. 107, D23, 4722–4729, 2002.CrossRefGoogle Scholar
  48. Sprovieri, F., Pirrone, N., Gardfeldt, K., Sommar, J. Atmospheric Mercury Speciation in the Marine Boundary Layer along 6000 km Cruise path over the Mediterranean Sea. Atmos. Environ., 37/S1, 63–72, 2003.CrossRefGoogle Scholar
  49. Sprovieri, F., Pirrone, N., Landis, M., Stevens, B, K. Mercury depletion events in the Arctic during the Intensive Spring 2003 campaign. Environ. Sci. Technol. (submitted), 2005.Google Scholar
  50. Steinnes, E., Anderson, Jakobsen. E.M. Atmospheric deposition of mercury in Norway. In Allan and Nriagu (eds.) Proceedings of the International Conference of Heavy Metals in the Environment, Toronto, September 1993, 70–73, 1993.Google Scholar
  51. UNEP Global Mercury Assessment (GMS) report. United Nations Environment Programme, Geneva, Switzerland, 2002.Google Scholar
  52. United States Centers for Disease Control Preventing lead poisoning in young children. J Pediatr, 93, 709–720, 1978.Google Scholar
  53. United States Centers for Disease Control. Preventing Lead Poisoning in Young Children: A Statement by the Centers for Disease Control. Report No. 99-2230. Atlanta, GA: CDC U.S. Department of Health and Human Services, 1991.Google Scholar
  54. United States Environmental Protection Agency. Report to Congress on Mercury. Volume VI. An Ecological Assessment for Anthropogenic Mercury Emissions in the United States. Pages 2.28–2.34. EPA-452/R-97-008. Washington D.C. USA.Google Scholar
  55. Wängberg, I., Munthe, J., Pirrone, N., Iverfeldt, Å., Bahlman, E., Costa, P., Ebinghaus, R., Feng, X., Ferrara, R., Gårdfeldt, K., Kock, H., Lanzillotta, E., Mamane, Y., Mas, F., Melamed, E., Osnat, Y., Prestbo E., Sommar, J., Schmolke, S., Spain, G., Sprovieri, F., Tuncel, G. Atmospheric Mercury Distributions in North Europe and in the Mediterranean Region. Atmos. Environ., 35, 3019–3025, 2001.CrossRefGoogle Scholar
  56. World Health Organization. Environmental health criteria. 101: methylmercury. Geneva (WHO): 1990.Google Scholar
  57. Yoshizawa, K., Rimm, E.B., Morris, J.S., Spate, V.L., Hsieh, C.C., Spiegelman, D., Stampfer, M.J., Willett, W.C. Mercury and the risk of coronary heart disease in men. New England J. Medicine, 347, 1755–60, 2002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Inc. 2005

Authors and Affiliations

  • Nicola Pirrone
    • 1
  • Kathryn R. Mahaffey
    • 2
  1. 1.CNR-Institute for Atmospheric PollutionDivision of RendeRendeItaly
  2. 2.Office of Science Coordination and PolicyUnited States Environmental Protection AgencyWashington

Personalised recommendations