On Some Nonstandard Dynamic Programming Problems of Control Theory

  • A. B. Kurzhanski
  • P. Varaiya
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 79)


The present report indicates an array of nonstandard target problems of control under state constraints. The problems are solved through dynamic optimization techniques where the systems are optimalized under nonintegral costs. In the general case this leads to new classes of HJB - type variational inequalities. In the linear case these problems may be treated through duality methods of nonlinear analysis and minimax theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aubin J-P., Viability Theory, Birkhauser, Boston, 1991.zbMATHGoogle Scholar
  2. [2]
    Bardi M., Capuzzo-Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser, Boston, 1997.zbMATHGoogle Scholar
  3. [3]
    Clarke F., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth Analysis and Control Theory, Springer-Verlag, 1993Google Scholar
  4. [4]
    Crandall M.G., Evans L.C., Lions P-L., “Some properties of solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc. v.282, N2, 1984.Google Scholar
  5. [5]
    Demianov V.F., Rubinov A.M., Foundations of Nonsmooth Analysis and Quasidifferential Calculus, (in Russian), Nauka, Moscow, 1990Google Scholar
  6. [6]
    Fleming W.H., Soner H.M., Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, 1993.Google Scholar
  7. [7]
    Gusev M.I., Kurzhanski A.B. Optimization of controlled systems with bounds on the controls and state coordinates. Differential equations, (transl. from Russian “Differencialniye uravneniya”) v.7, NN 9, 10, 1971.Google Scholar
  8. [8]
    Krasovskii N. N., Game-Theoretic Problems on the Encounter of Motions. Nauka, Moscow, 1970, (in Russian), English Translation: Rendezvous Game Problems Nat.Tech.Inf.Serv., Springfield, VA, 1971.Google Scholar
  9. [9]
    Kurzhanski A.B. Control and Observation Under Uncertainty, Nauka, Moscow (in Russian), 1977.Google Scholar
  10. [10]
    Kurzhanski A.B., Varaiya P., “Dynamic optimization for reachability problems”, JOTA, vol. 108, N2, pp.227–251, 2001.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Kurzhanski A.B., Varaiya P. “Reachability Under State Constraints-the Ellipsoidal Technique”, Proc. IFAC-2002 World Congress, Barcelona, 2002.Google Scholar
  12. [12]
    Lee E.B., Marcus L., Foundations of Optimal Control Theory, Wiley, NY, 1967.zbMATHGoogle Scholar
  13. [13]
    Leitmann G., “Optimality and reachability via feedback controls”. In: Dynamic systems and mycrophysics, Blaquiere A., Leitmann G. eds., 1982.Google Scholar
  14. [14]
    Lions P.L., Viscosity solutions and optimal control. Proc. of ICIAM 91, SIAM, Philadelphia, 1992, pp.182–195.Google Scholar
  15. [15]
    Lygeros J., Tomlin C, Sastri S., “Controllers for reachability specifications for hybrid systems.” Automatica, v.35(3), pp.349–370, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Osher S., Fedkiw R., Level Set Methods and Implicit Surfaces. Springer, 2002.Google Scholar
  17. [17]
    Rockafellar R.T., Wets R.J.B., Variational Analysis, Springer-Verlag, 1998.Google Scholar
  18. [18]
    Sethian J.A., Level Set Methods and Fast Marching Methods, Cambridge Univ. Press, 1994.Google Scholar
  19. [19]
    Subbotin A.I. Generalized Solutions of First-Order PDE’s. The Dynamic optimization Perspective. Birkhauser, Boston, 1995.Google Scholar
  20. [20]
    Varaiya P., “Reach set computation using optimal control”. Proc. of KIT Workshop on Verification of Hybrid Systems, Verimag, Grenoble, 1998.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. B. Kurzhanski
    • 1
  • P. Varaiya
    • 2
  1. 1.fac. CMCMoscow State (Lomonosov) UniversityMoscow
  2. 2.EECS, ERLUniversity of California at BerkeleyBerkeley

Personalised recommendations