Role of Complement Receptor 2 in the Pathogenesis of Systemic Lupus Erythematosus

  • Susan A. Boackle
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 560)


A number of recent studies have suggested that complement receptor type 2 (CR2, CD21) may play a role in the development of systemic autoimmunity. This receptor, located primarily on B cells and follicular dendritic cells in mice with a broader distribution in humans, binds C3 degradation products that have become covalently bound to antigen or immune complexes in the process of complement activation. Its role in both normal immune responses as well as systemic autoimmune disease has been supported by studies of mice in which the gene has been knocked out by homologous recombination. Furthermore, it is structurally and functionally altered in the NZM2410 mouse model of lupus, and is a strong candidate gene for lupus susceptibility in this model. Based on its known functions, several mechanisms can be hypothesized to explain its potential role in the pathogenesis of systemic lupus erythematosus.


Systemic Lupus Erythematosus Complement Receptor Cell Tolerance Follicular Dendritic Cell Complement Receptor Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Fujisaku, J. B. Harley, M. B. Frank, B. A. Gruner, B. Frazier and V. M. Holers, Genomic organization and polymorphisms of the human C3d/Epstein-Barr virus receptor, J. Biol. Chem. 264, 2118–2125 (1989).PubMedGoogle Scholar
  2. 2.
    M. H. Holguin, C. B. Kurtz, C. J. Parker, J. J. Weis and J. H. Weis, Loss of human CR1-and murine Crry-like exons in human CR2 transcripts due to CR2 gene mutations, J. Immunol. 145, 1776–1781 (1990).PubMedGoogle Scholar
  3. 3.
    J. L. Gommerman, D. Y. Oh, X. Zhou, T. F. Tedder, M. Maurer, S. J. Galli and M. C. Carroll, A role for CD21/CD35 and CD19 in responses to acute septic peritonitis: a potential mechanism for mast cell activation, J. Immunol. 165, 6915–6921 (2000).PubMedGoogle Scholar
  4. 4.
    Z. Kaya, M. Afanasyeva, Y. Wang, K. M. Dohmen, J. Schlichting, T. Tretter, D. Fairweather, V. M. Holers and N. R. Rose, Contribution of the innate immune system to autoimmune myocarditis: a role for complement, Nature Immunol. 2, 739–745 (2001).CrossRefGoogle Scholar
  5. 5.
    T. F. Tedder, L. T. Clement and M. D. Cooper, Expression of C3d receptors during human B cell differentiation: immunofluorescence analysis with the HB-5 monoclonal antibody, J. Immunol. 133, 678–683 (1984).PubMedGoogle Scholar
  6. 6.
    C. D. Tsoukas and J. D. Lambris, Expression of CR2/EBV receptors on human thymocytes detected by monoclonal antibodies, Eur. J. Immunol. 18, 1299–1302 (1988).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Watry, J. A. Hedrick, S. Siervo, G. Rhodes, J. J. Lamberti, J. D. Lambris and C. D. Tsoukas, Infection of human thymocytes by Epstein-Barr virus, J. Exp. Med. 173, 971–980 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    E. Fischer, C. Delibrias and M. D. Kazatchkine, Expression of CR2 (the C3dg/EBV receptor, CD21) on normal human peripheral blood T lymphocytes, J. Immunol. 146, 865–869 (1991).PubMedGoogle Scholar
  9. 9.
    E. Levy, J. Ambrus, L. Kahl, H. Molina, K. Tung and V. M. Holers, T lymphocyte expression of complement receptor 2 (CR2/CD21): a role in adhesive cell-cell interactions and dysregulation in a patient with systemic lupus erythematosus (SLE), Clin. Exp. Immunol. 90, 235–244 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Reynes, J. P. Aubert, J. H. M. Cohen, J. Audouin, V. Tricottet, J. Diebold and M. D. Kazatchkine, Human follicular dendritic cells express CR1, CR2, and CR3 complement receptor antigens, J. Immunol. 135, 2687–2694 (1985).PubMedGoogle Scholar
  11. 11.
    K. Bacon, J. F. Gauchat, J. P. Aubry, S. Pochon, P. Graber, S. Henchoz and J. Y. Bonnefoy, CD21 expressed on basophilic cells is involved in histamine release triggered by CD23 and anti-CD21 antibodies, Eur. J. Immunol. 23, 2721–2724 (1993).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Hunyadi, M. Simon, A. S. Kenderessy and A. Dobozy, Expression of complement receptor 2 (CD21) on human subcorneal keratinocytes in normal and diseased skin, Dermatologica 183, 184–186 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    P. Gasque, P. Chan, C. Mauger, M. Schouft, S. Singhrao, M. P. Dierich, B. P. Morgan and F. Marc, Identification and characterization of complement C3 receptors on human astrocytes, J. Immunol. 156, 2247–2255 (1996).PubMedGoogle Scholar
  14. 14.
    J. Levine, S. C. Pflugfelder, M. Yen, C. A. Crouse and S. S. Atherton, Detection of the complement (CD21)/Epstein-Barr virus receptor in human lacrimal gland and ocular surface epithelia, Reg. Immunol. 3, 164–170 (1990).PubMedGoogle Scholar
  15. 15.
    E. J. Rayhel, M. H. Dehoff and V. M. Holers, Characterization of the human complement receptor 2 (CR2, CD21) promoter reveals sequences shared with regulatory regions of other developmentally restricted B cell proteins, J. Immunol. 146, 2021–2026 (1991).PubMedGoogle Scholar
  16. 16.
    L. Yang, M. Behrens and J. J. Weis, Identification of 5′-regions affecting the expression of the human CR2 gene, J. Immunol. 147, 2404–2410 (1991).PubMedGoogle Scholar
  17. 17.
    L. A. Vereshchagina, M. Tolnay and G. C. Tsokos, Multiple transcriptional factors regulate the inducible expression of the human complement receptor 2 promoter, J. Immunol. 166, 6156–6163 (2001).PubMedGoogle Scholar
  18. 18.
    D. Ulgiati and V. M. Holers, CR2/CD21 proximal promoter activity is critically dependent on a cell type-specific repressor, J. Immunol. 167, 6912–1919 (2001).PubMedGoogle Scholar
  19. 19.
    D. Ulgiati, C. Pham and V. M. Holers, Functional analysis of the human complement receptor 2 (CR2/CD21) promoter: characterization of basal transcriptional mechanisms, J. Immunol. 168, 6279–6285 (2002).PubMedGoogle Scholar
  20. 20.
    K. W. Makar, C. T. N. Pham, M. H. Dehoff, S. M. O’Connor, S. M. Jacobi and V. M. Holers, An intronic silencer regulates B lymphocyte cell-and stage-specific expression of the human complement receptor type 2 (CR2, CD21) gene, J. Immunol. 160, 1268–1278 (1998).PubMedGoogle Scholar
  21. 21.
    K. W. Makar, D. Ulgiati, J. Hagman and V. M. Holers, A site in the complement receptor 2 (CR2/CD21) silencer is necessary for lineage specific transcriptional regulation. Int Immunol 13, 657–664 (2001).PubMedCrossRefGoogle Scholar
  22. 22.
    M. D. Zabel and J. H. Weis, Cell-specific regulation of the CD21 gene., Int Immunopharm 1, 483–493 (2001).CrossRefGoogle Scholar
  23. 23.
    H. Hu, B. K. Martin, J. J. Weis and J. H. Weis, Expression of the murine CD21 gene is regulated by promoter and intronic sequences, J. Immunol. 158, 4758–4768 (1997).PubMedGoogle Scholar
  24. 24.
    H. Molina, T. Kinoshita, K. Inoue, J.-C. Carel and V. M. Holers, A molecular and immunochemical characterization of mouse CR2: evidence for a single gene model of mouse complement receptors 1 and 2, J. Immunol. 145, 2974–2983 (1990).PubMedGoogle Scholar
  25. 25.
    H. P. Huemer, C. Larcher, W. M. Prodinger, A. L. Petzer, M. Mitterer and N. Falser, Determination of soluble CD21 as a parameter of B cell activation, Clin. Exp. Immunol. 93, 195–199 (1995).CrossRefGoogle Scholar
  26. 26.
    M. Masilamani, D. Kassahn, S. Mikkat, M. O. Glocker and H. Illges, B cell activation leads to shedding of complement receptor type II (CR2/CD21), Eur. J. Immunol. 33, 2391–2397 (2003).PubMedCrossRefGoogle Scholar
  27. 27.
    K. Iida, L. Nadler and V. Nussenzweig, Identification of the membrane receptor for the complement fragment C3d by means of a monoclonal antibody., J. Exp. Med. 158, 1021–1033 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    J. J. Weis, T. F. Tedder and D. T. Fearon, Identification of a 145,000 Mr membrane protein as the C3d receptor (CR2) of human B lymphocytes., Proc. Natl. Acad. Sci. USA 81, 881–885 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Szakonyi, J. M. Guthridge, D. Li, K. Young, V. M. Holers and X. S. Chen, Structure of complement receptor 2 in complex with its C3d ligand, Science 292, 1725–1728 (2001).PubMedCrossRefGoogle Scholar
  30. 30.
    J. D. Fingeroth, J. J. Weis, T. F. Tedder, J. L. Strominger, P. A. Biro and D. T. Fearon, Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2., Proc. Natl. Acad. Sci. USA 81, 4510–4514 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    J.-P. Aubry, S. Pochon, P. Graber, K. U. Jansen and J.-Y. Bonnefoy, CD21 is a ligand for CD23 and regulates IgE production., Nature 358, 505–507 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    A. X. Delcayre, F. Salas, S. Mathur, K. Kovats, M. Lotz and W. Lemhardt, Epstein Barr virus/complement C3d receptor is an interferon alpha receptor, EMBO J. 10, 919–926 (1991).PubMedGoogle Scholar
  33. 33.
    R. H. Carter, M. O. Spycher, Y. C. Ng, R. Hoffman and D. T. Fearon, Synergistic interaction between complement receptor type 2 and membrane IgM on B lymphocytes, J. Immunol. 141, 457–463 (1988).PubMedGoogle Scholar
  34. 34.
    J. D. Fingeroth, M. E. Heath and D. M. Ambrosino, Proliferation of resting B cells is modulated by CR2 and CR1., Immunol. Lett. 21, 291–302 (1989).PubMedCrossRefGoogle Scholar
  35. 35.
    A. T. Luxembourg and N. R. Cooper, Modulation of signaling via the B cell antigen receptor by CD21, the receptor for C3dg and EBV, J. Immunol. 153, 4448–4457 (1994).PubMedGoogle Scholar
  36. 36.
    Y. Kozono, R. C. Duke, M. S. Schleicher and V. M. Holers, Co-ligation of mouse complement receptors 1 and 2 with surface IgM rescues splenic B cells and WEHI-231 cells from anti-surface IgM-induced apoptosis., Eur. J. Immunol. 25, 1013–1017 (1995).PubMedCrossRefGoogle Scholar
  37. 37.
    J. Arvieux, H. Yssel and M. G. Colomb, Antigen-bound C3b and C4b enhance antigen-presenting cell function in activation of human T-cell clones, Immunology 65, 229–235 (1988).PubMedGoogle Scholar
  38. 38.
    S. A. Boackle, V. M. Holers and D. R. Karp, CD21 augments antigen presentation in immune individuals., Eur. J. Immunol. 27, 122–130 (1997).PubMedCrossRefGoogle Scholar
  39. 39.
    S. A. Boackle, M. A. Morris, V. M. Holers and D. R. Karp, Complement opsonization is required for the presentation of immune complexes by resting peripheral blood B cells., J. Immunol. 161, 6537–6543 (1998).PubMedGoogle Scholar
  40. 40.
    A. Lanzavecchia, S. Abrignani, D. Scheidegger, R. Obrist, B. Dorken and G. Moldenhauer, Antibodies as antigens: the use of mouse monoclonal antibodies to focus human T cells against selected targets, J. Exp. Med. 167, 345–352 (1988).PubMedCrossRefGoogle Scholar
  41. 41.
    B. P. Thomton, V. Vetvicka and G. D. Ross, Natural antibody and complement-mediated antigen processing and presentation by B lymphocytes, J. Immunol. 152, 1727–1737 (1994).Google Scholar
  42. 42.
    Y. Kozono, R. Abe, H. Kozono, R. G. Kelly, T. Azuma and V. M. Holers, Cross-linking CD21/CD35 or CD19 increases both B7-1 and B7-2 expression on murine splenic B cells., J. Immunol. 160, 1565–1572 (1998).PubMedGoogle Scholar
  43. 43.
    A. Cherukuri, P. C. Cheng, H. W. Sohn and S. K. Pierce, The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts., Immunity 14, 169–179 (2001).PubMedCrossRefGoogle Scholar
  44. 44.
    G. G. B. Klaus, The generation of memory cells. II. Generation of B memory cells with preformed antigen-antibody complexes., Immunology 34, 643–652 (1978).PubMedGoogle Scholar
  45. 45.
    M. Papamichai, C. Gutierrez, P. Embling, P. Johnson, E. J. Holborow and M. B. Pepys, Complement dependence of localization of aggregated IgG in germinal centers., Scand. J. Immunol. 4, 343–347 (1975).CrossRefGoogle Scholar
  46. 46.
    L. E. Bradbury, G. S. Kansas, S. Levy, R. L. Evans and T. F. Tedder, The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules, J. Immunol. 149, 2841–2850 (1992).PubMedGoogle Scholar
  47. 47.
    A. K. Matsumoto, J. Kopicky-Burd, R. H. Carter, D. A. Tuveson, T. F. Tedder and D. T. Fearon, Intersection of the complement and immune systems: a signal transduction complex of the B lymphocyte-containing complement receptor type 2 and CD19, J. Exp. Med. 173, 55–64 (1991).PubMedCrossRefGoogle Scholar
  48. 48.
    M. A. Lindorfer, H. B. Jinivizian, P. L. Foley, A. D. Kennedy, M. D. Solga and R. P. Taylor, B cell complement receptor 2 transfer reaction, J. Immunol. 170, 3671–3678 (2003).PubMedGoogle Scholar
  49. 49.
    J. M. Aheam, M. B. Fischer, D. Croix, S. Goerg, M. Ma, J. Xia, X. Zhou, R. G. Howard, T. L. Rothstein and M. C. Carroll, Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen., Immunity 4, 251–262 (1996).CrossRefGoogle Scholar
  50. 50.
    D. A. Croix, J. M. Ahearn, A. M. Rosengard, S. Han, G. Kelsoe, M. Ma and M. C. Carroll, Antibody response to a T-dependent antigen requires B cell expression of complement receptors, J. Exp. Med. 183, 1857–1864 (1996).PubMedCrossRefGoogle Scholar
  51. 51.
    H. Molina, V. M. Holers, B. Li, Y.-F. Fang, S. Mariathasan, J. Goellner, J. Strauss-Schoenberger, R. W. Karr and D. D. Chaplin, Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2, Proc. Natl. Acad. Sci. USA 93, 3357–3361 (1996).PubMedCrossRefGoogle Scholar
  52. 52.
    X. Wu, N. Jiang, Y.-F. Fang, C. Xu, D. Mao, J. Singh, Y.-X. Fu and H. Molina, Impaired affinity maturation in Cr2-/- mice is rescued by adjuvants without improvement in germinal center development, J. Immunol. 165, 3119–3127 (2000).PubMedGoogle Scholar
  53. 53.
    R. A. Barrington, O. Pozdnyakova, M. R. Zafari, C. D. Benjamin and M. C. Carroll, B lymphocyte memory: role of stromal cell complement and FcgRIIB receptors., J. Exp. Med. 196, 1189–1199 (2002).PubMedCrossRefGoogle Scholar
  54. 54.
    S. D. Fleming, T. Shea-Donohue, J. M. Guthridge, L. Kulik, T. J. Waldschmidt, M. G. Gipson, G. C. Tsokos and V. M. Holers, Mice deficient in complement receptors 1 and 2 lack a tissue injury-inducing subset of the natural antibody repertoire, J. Immunol. 169, 2126–2133 (2002).PubMedGoogle Scholar
  55. 55.
    Y. Fang, C. Xu, X.-Y. Fu, V. M. Holers and H. Molina, Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response., J. Immunol. 160, 5273–5279 (1998).PubMedGoogle Scholar
  56. 56.
    M. B. Fischer, S. Goerg, L. Shen, A. P. Prodens, C. C. Goodnow, G. Kelsoe and M. C. Carroll, Dependence of germinal center B cells on expression of CD21/CD35 for survival., Science 280, 582–585 (1998).PubMedCrossRefGoogle Scholar
  57. 57.
    J. G. Wilson, W. D. Ratnoff, P. H. Schur and D. T. Fearon, Decreased expression of the C3b/C4b receptor (CR1) and the C3d receptor (CR2) on B lymphocytes and of CR1 on neutrophils of patients with systemic lupus erythernatosus, Arth. Rheum. 29, 739–747 (1986).CrossRefGoogle Scholar
  58. 58.
    H. V. Marquart, A. Svendsen, J. M. Rasmussen, C. H. Nielsen, P. Junker, S.-E. Svehag and R. G. Q. Leslie, Complement receptor expression and activation of the complement cascade on B lymphocytes from patients with systemic lupus erythernatosus (SLE), Clin. Exp. Immunol. 101, 60–65 (1995).PubMedCrossRefGoogle Scholar
  59. 59.
    K. Takahashi, Y. Kozono, T. J. Waldschmidt, R. J. Quigg, A. Baron and V. M. Holers, Mouse complement receptors type 1 (CR1; CD35) and type 2 (CR2; CD21): expression on normal B cell subpopulations and decreased levels during development of autoimmunity in MRL/lpr mice., J. Immunol. 159, 1557–1569 (1997).PubMedGoogle Scholar
  60. 60.
    A. P. Prodeus, S. Georg, L.-M. Shen, O. O. Pozdnyakova, L. Chu, E. M. Alicot, C. C. Goodnow and M. C. Carroll, A critical role for complement in the maintenance of self-tolerance., Immunity 9, 721–731 (1998).PubMedCrossRefGoogle Scholar
  61. 61.
    X. Wu, N. Jiang, C. Deppong, J. Singh, G. Dolecki, D. Mao, L. Morel and H. D. Molina, A role for the Cr2 gene in modifying autoantibody production in systemic lupus erythematosus., J. Immunol. 169, 1587–1592 (2002).PubMedGoogle Scholar
  62. 62.
    S. A. Boackle, V. M. Holers, X. Chen, G. Szakonyi, D. R. Karp, E. K. Wakeland and L. Morel, Cr2, a candidate gene in the murine Sle1c lupus susceptibility locus, encodes a dysfunctional protein., Immunity 15, 775–785 (2001).PubMedCrossRefGoogle Scholar
  63. 63.
    D. Qin, J. Wu, M. C. Carroll, G. F. Burton, A. K. Szakal and J. G. Tew, Evidence for an important interaction between a complement-derived CD21 ligand on follicular dendritic cells and CD21 on B cells in the initiation of IgG responses., J. Immunol. 161, 4549–4554 (1998).PubMedGoogle Scholar
  64. 64.
    A. Suto, H. Nakajima, K. Ikeda, S. Kubo, T. Nakayama, M. Taniguchi, Y. Saito and I. Iwamoto, CD4+CD25+ T-cell development is regulated by at least 2 distinct mechanisms., Blood 99, 555–560 (2002).PubMedCrossRefGoogle Scholar
  65. 65.
    M. Taniguchi, M. Harada, S. Kojo, T. Nakayama and H. Wakao, The regulatory role of Va14 NKT cells in innate and acquired immune response, Annu. Rev. Immunol. 21, 483–513 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Susan A. Boackle
    • 1
  1. 1.University of Colorado Health Sciences CenterDenver

Personalised recommendations