Skip to main content

Spatial Heterogeneity and Its Relation to Processes in the Upper Ocean

  • Chapter

In the ocean, the spatial distribution of biogeochemical tracers is affected by their physical transport in the fluid medium. Many tracer distributions such as sea surface chlorophyll and temperature are highly correlated at length scales of 1–100 km on account of a commonality in the transport processes that affect them. We characterize and differentiate between the spatial heterogeneity of the tracers by using a variance-based measure for “patchiness.” When we analyze the satellite-derived fields of surface chlorophyll and temperature, we find that chlorophyll is more patchy than temperature (i.e., a greater proportion of its variance occurs at small scales). We explain such differences in heterogeneity by taking the approach that the observed spatial heterogeneity of a tracer results from a balance between processes that generate variance and those that shift the variance from one length scale to another. The longevity of the tracer determines the extent to which the variance can be shifted to another scale. In the surface ocean, variance introduced at large scales due to geographic variations can be driven to smaller scales by the horizontal stirring and stretching of fluid filaments. On the other hand, small-scale vertical motion associated with fronts introduces small-scale variance that spreads to larger scales if the tracer anomalies are long lasting. For the latter case, we derive a quantitative relationship between a tracer's patchiness and the timescales of processes that modify its concentration in the upper ocean. This relationship links the observed spatial heterogeneity in the system to the processes that contribute to its generation. It lends hope to our being able to use quantitative measures of spatial heterogeneity, like the patchiness parameter defined here, to gain information about processes or, vice versa, to predict how the spatial heterogeneity might be modified as a result of a change in processes.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc

About this chapter

Cite this chapter

Mahadevan, A. (2005). Spatial Heterogeneity and Its Relation to Processes in the Upper Ocean. In: Lovett, G.M., Turner, M.G., Jones, C.G., Weathers, K.C. (eds) Ecosystem Function in Heterogeneous Landscapes. Springer, New York, NY. https://doi.org/10.1007/0-387-24091-8_9

Download citation

Publish with us

Policies and ethics