Skip to main content

The Charge-to-Mass ICR Signature in Weak ELF Bioelectromagnetic Effects

  • Chapter
Advances in Electromagnetic Fields in Living Systems

Part of the book series: Advances in Electromagnetic Fields in Living Systems ((AEFL,volume 4))

Abstract

There is good experimental evidence for a specific biological interaction with ELF magnetic fields that is functionally dependent on ion cyclotron resonance (ICR) frequencies as derived from ionic charge-to-mass ratios. This evidence is gleaned from studies on an extraordinarily wide variety of biological systems. However, no reasonable underlying theoretical construct has surfaced to explain these results at the microscopic level, and thus the nature of this q/m interaction remains empirical at best. The main difficulty with the various theoretical models that have been advanced is that sustaining ion cyclotron resonance in a biological milieu is highly improbable considering the relatively large damping suffered by ions. Further, in cases where the damping problem may be ameliorated, as for example, in the interior pore of ion channels, there is a large discrepancy between expected cyclotron resonance-mediated ion transit times and observed times, which are faster by a factor of 107. Some, notably Lednev, Blanchard, Binhi, and Zhadin, have attempted to explain the unique charge-to-mass signature using models that do not explicitly involve the classical ICR mechanism, but nevertheless still result in functional dependences on the ion cyclotron resonance frequency. Most recently, del Giudice has suggested replacing Maxwellian statistics when studying bioelectromagnetic interactions at the cellular level with quantum electro-dynamics, claiming that the experimental results support the view that highly ordered coherent domains are involved. Two additional sets of experimental results, both involving conductivity measurements in cell-free systems, have now been reported, first, the discovery by Zhadin that polar amino acids in solution are sensitive to ICR magnetic field exposures, and the second, by Mohri, that a 1 μT ICR magnetic signal applied to ultra-pure (18.2 MΩ-cm) water for as little as one minute will result in increased conductivity lasting for days. These findings may shed light on the persistent and controversial reports claiming that the physical properties of water can be altered by relatively weak magnetic field exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair, R.K., 1991, Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Physical Review A 43: 1039–1048.

    Article  PubMed  Google Scholar 

  • Adair, R.K., 1992, Criticism of Lednev’s mechanism for the influence of weak magnetic field on biological systems. Bioelectromagnetics 13: 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Adair, R.K., 1998, A physical analysis of the ion parametric resonance model. Bioelectromagnetics 19: 181–191.

    CAS  Google Scholar 

  • Aidley, D.J., and Stanfield, P.B., 1996, Ion Channels. Cambridge University Press, Cambridge, p. 146.

    Google Scholar 

  • Ayrapetyan, S.N., Grigorian, K.V., Avansion, A.S., and Stanbltsian, K.V., 1994, Magnetic fields alter electrical properties of solutions and their physiological effects. Bioelectromagnetics 18: 133–142.

    Article  Google Scholar 

  • Bassett, C.A.L., Pawluk, R.J., and Pilla, A.A., 1974, Acceleration of fracture repair by electromagnetic fields: A surgically non-invasive method. In: Liboff A.R., and Rinaldi, R.A., Editors, Electrically Mediated Growth Mechanisms in Living Systems. Ann. N.Y. Acad. Sci. 238: 242–262.

    Google Scholar 

  • Bawin, S.M., Kazmarek, K.L., and Adey, W.R., 1975, Effects of modulated VHF fields on the central nervous system. Ann. NY Acad. Sci. 247: 74–81.

    PubMed  CAS  Google Scholar 

  • Belova, N.A., and Lednev, VV., 2000a, Activation and inhibition of gravitropic response in plants by weak combined magnetic fields. Biophysics 45: 1069–1074.

    Google Scholar 

  • Belova N.A., and Lednev V.V., 2000b, Dependence of gravitropic rersponse in the segments of flax stems on the frequency and amplitude of weak combined magnetic fields. Biophysics 45: 1075–1078.

    Google Scholar 

  • Bennett, W. R., Jr., 1994, Low-frequency Electromagnetic Fields and Health. Yale Univ. Press, New Haven.

    Google Scholar 

  • Berden, M, Zrimec, and Jerman, I., 2001, New biological detection system for weak ELF magnetic fields and testing of the parametric resonance model. Electro-and MagnetoBiology 20: 27–41.

    Article  Google Scholar 

  • Binhi V.N., 2000, Amplitude and frequency dissociation spectra of ion-protein complexes rotating in magnetic fields. Bioelectromagnetics 21: 34–45.

    Article  PubMed  CAS  Google Scholar 

  • Blackman, C.F., Benane, S.G., Kinney, L.S., Joines, W.T., and House, D.E., 1982, Effects of ELF fields on calcium-ion efflux from brain tissue in vivo. Rad. Res. 92: 510–520.

    CAS  Google Scholar 

  • Blackman C.F., Benane, S.G., Rabinowitz, J.R., House D.E., and Joines W.T., 1985, A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6; 327–337.

    Article  PubMed  CAS  Google Scholar 

  • Blackman C.F., Blanchard, J.P., Benane S.G., and House, D.E., 1994, Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics 15: 239–250.

    Article  PubMed  CAS  Google Scholar 

  • Blackman, C.F., Blanchard, J.P., Benane, S.G., and House, D.E. 1999, Experimental determination of hydrogen bandwidth fore the Ion Parametric Resonance model. Bioelectromagnetics 20: 5–12.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard, J.P., Blackman, C.F., Benane, S.G., and House, D.E. 1997, IPR response of PC-12 cells exposed to magnetic fields tuned for calcium ions. The Annual Review of Research on Biological Effects of Electric and Magnetic Fields from the Generation, Delivery and use of Electricity. Paper A-5, p. 4, San Diego, CA W/L Associates, Ltd. Frederick, MD.

    Google Scholar 

  • Bruckner-Lea, C., Durney, C.H., Janata, J., Rappaport, C., and Kaminski, M. 1992, Calcium binding to metallochromic dyes and calmodulin in the presence of combined AC-DC magnetic fields. Bioelectromagnetics 13: 147–162.

    Article  PubMed  CAS  Google Scholar 

  • Chemeris, N.K., and Safranova, V.G., 1993, Weak low-frequency magnetic field initiates frequency-dependent fluctuations of period of Daphnia magna’s heart beatings. Biophysics 38: 511–519.

    CAS  Google Scholar 

  • Clarkson, H., Davies, M.S., and Dixey, R., 1999, Diatom motilty and low-frequency electromagnetic fields: a new technique in the search for independent replication of results. Bioelectromagnetics 20: 94–100.

    Article  PubMed  CAS  Google Scholar 

  • Coulton, L.A., and Barker, A.T., 1993, Magnetic fields and intracellular calcium: effects on lymphocytes exposed to conditions for “cyclotron resonance”. Phys Med Biol 38: 347–360.

    Article  PubMed  CAS  Google Scholar 

  • Creim, J.A., Lovely, R.H., Miller, D.L., and Anderson, L.E., 2002, Rats can discriminate illuminance, but not magnetic fields, as a stimulus for learning a two-choice discrimination. Bioelectromagnetics 23: 545–549.

    Article  PubMed  CAS  Google Scholar 

  • Davies, M.S., 1996, Effects of 60 Hz electromagnetic fields on early growth in three plant species and a replication of previous results. Bioelectromagnetics 17: 154–161.

    Article  PubMed  CAS  Google Scholar 

  • Del Giudice, E., Fleischmann, M., Preperata, G., and Talpo, G., 2002, On the “unreasonable” effects of ELF magnetic fields upon a system of ions. Bioelectromagnetics 23: 522–530.

    Article  PubMed  Google Scholar 

  • Derjugina, O.N., Pisachenko, T.M., and Zhadin, M.N., 1996, Combined action of alternating and static magnetic fields on behavior of rats in the “Open-field” test. Biophysics 41: 762–764.

    Google Scholar 

  • Diebert, M.C., McLeod, B.R., Smith, S.D., and Liboff, A.R., 1994, Ion resonance electromagnetic field stimulation of fracture healing in rabbits with a fibular ostectomy. J. of Orthopedic Res. 12: 878–885.

    Article  Google Scholar 

  • Durney, C.H., Rushforth C.K., and Anderson A.A., 1988, Resonant AC-DC magnetic fields: Calculated response. Bioelectromagnetics 9: 315–336.

    Article  PubMed  CAS  Google Scholar 

  • Durney, C.H., Kaminski, M., Anderson, A.A., Bruckner-Lea, C., and Rappaport, C., 1992, Investigation of AC-DC magnetic field effects in planar phospholipid layers. Bioelectromagnetics 13: 19–33.

    Article  PubMed  CAS  Google Scholar 

  • Edmonds D.T., 1993, Larmor precession as a mechanism for the detection of static and alternating magnetic fields. Bioelectrochemistry and Bioenergetics 30: 3–12.

    Article  Google Scholar 

  • Fitzsimmons, R.J., Baylink, D.J., Ryaby, J.T., and Magee, F., 1993, EMF-stimulated bone-cell proliferation. in Blank, M., Ed., Electricity and Magnetism in Biology and Medicine. San Francisco Press, SanFrancisco.

    Google Scholar 

  • Ftzsimmons, R.J., Ryaby, J.T., Magee, F.P., and Baylink, D.J., 1994, Combined magnetic fields increased net calcium flux in bone cells. Calcified Tissue International 55: 376–380.

    Article  Google Scholar 

  • Fitzsimmons, R.J., Ryaby, J.T., Magee, F.P., and Baylink, D.J., 1995a, Combined magnetic fields increase insulin-like growth factor-II in TE-85 human osteosarcoma bone cell cultures. Endocrinology 136: 3100–3106.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimmons, R.J., Ryaby, J.T., Magee, F.P., and Baylink, D.J., 1995b, IGF-II receptor number is increased in TE-85 human osteosarcoma cells by combined magnetic fields. J. of Bone and Mineral Research 10: 812–819.

    Article  CAS  Google Scholar 

  • Frohlich, H., 1980, The biological effects of microwaves and related questions. Adv. Electronics Electron Physics 53: 85–152.

    Article  Google Scholar 

  • Galt, S., Sandblom, A., Hamnerius, Y., Hojevic, P., Saalman, E., and Norden, B. 1993, Experimental search for combined AC and DC magnetic field effects on ion channels. Bioelectromagnetics 14: 315–327.

    Article  PubMed  CAS  Google Scholar 

  • Halle, B., 1988, On the cyclotron resonance mechanism for magnetic fields on transmembrane ion conductivity. Bioelectromagnetics 14: 381–385.

    Article  Google Scholar 

  • Hille, B., 1984, Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, Mass., p. 183.

    Google Scholar 

  • Hojevic, P., Sandblom, J., Galt, S., and Hamnerius, Y. 1995, Ca2+ ion transport through patch-clamped cells exposed to magnetic fields. Bioelectromagnetics 16: 33–40.

    Article  Google Scholar 

  • Horton, P. Ryaby, J.T., Magee, F.P., and Weinstein, A.M 1993, Stimulation of specific neuronal differentiation proteins in PC-12 cells by combined AC/DC magnetic fields. In Blank, M., Ed., Electricity and Magnetism in Biology and Medicine. San Francisco Press, San Francisco.

    Google Scholar 

  • Jackson J.D., 1967, Classical Electrodynamics. John Wiley & Sons, New York, p. 436.

    Google Scholar 

  • Jenrow, K.A., Smith, C.H., and Liboff, A.R., 1995, Weak extremely-low-frequency magnetic fields and regeneration in the planarian Dugesia tigrina. Bioelectromagnetics 16: 106–112.

    Article  PubMed  CAS  Google Scholar 

  • Jenrow, K.A., Smith C.H., and Liboff A.R., 1996, weak, extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina. Bioelectromagnetics 17: 467–474.

    Article  PubMed  CAS  Google Scholar 

  • Kuyucak, S., Andersen, O.S., and Chung, S.-H., 2001, Models of permeation in ion channels. Rep. Prog. Physics 64: 1427–1472.

    Article  CAS  Google Scholar 

  • Lednev, V.V., 1991, Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12: 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Liboff, A.R., Williams, Jr. T., Strong, D.M., and Wistar Jr, R., 1984, Time-varying magnetic fields: Effect on DNA synthesis. Science 223: 818–820.

    PubMed  CAS  Google Scholar 

  • Liboff, A.R., 1985, Geomagnetic cyclotron resonance in living cells, J. Biol. Physics 13: 99–102.

    Article  Google Scholar 

  • Liboff, A.R., Rozek, R.J., Sherman, M.L., McLeod, B.R., and Smith, S.D., 1987, 45Ca2+ resonance in human lymphocytes. J. of Bioelectricity 6: 99–102.

    Google Scholar 

  • Liboff, A.R. and McLeod, B.R., 1988, Kinetics of channelized membrane ions in magnetic fields. Bioelectromagnetics 9: 39–51.

    Article  PubMed  CAS  Google Scholar 

  • Liboff, A.R., Thomas, J.R., and Schrot, J., 1989, Intensity threshold for 60-Hz magnetically induced behavioral changes in rats. Bioelectromagnetics 10:111–113.

    Article  PubMed  CAS  Google Scholar 

  • Liboff, A.R., and Parkinson, W.C., 1991, Search for ion-cyclotron resonance in an Na+ transport system. Bioelectromagnetics 12: 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Liboff, A.R., Jenrow, K.A., and McLeod, B.R.,1993, ELF-induced proliferation at 511mG in HSB-2 cell culture as a function of 60 Hz field intensity, in Blank, M., Ed., Electricity and Magnetism in Biology and Medicine. San Francisco Press, San Francisco.

    Google Scholar 

  • Liboff, A.R., 1997, Electric-field ion cyclotron resonance. Bioelectromagnetics 18: 85–87.

    Article  PubMed  CAS  Google Scholar 

  • Liboff, A.R., and Jenrow, K.A., 2000a, Cell sensitivity to magnetic fields. Electro-MagnetoBiology 19: 223–236.

    Article  CAS  Google Scholar 

  • Liboff, A.R., and Jenrow, K.A., 2000b, New model for the avian magnetic compass. Bioelectromagnetics 21: 555–565.

    Article  PubMed  CAS  Google Scholar 

  • Liboff, A.R., 2002, Comment on “Extremely low frequency magnetic fields can either increase or decrease analgesia in the Land Snail depending on field and light conditions”. Bioelectromagnetics 23:406–407.

    Article  PubMed  Google Scholar 

  • Liboff, A.R., 2003, in: Sravroulakis P., Editor, Biological Effect of Electromagnetic Fields, Springer, Berlin, pp. 76–113.

    Google Scholar 

  • Liburdy, R.P., and Yost, M.G., 1993, Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. In Blank, M., Ed., Electricity and Magnetism in Biology and Medicine. San Francisco Press, San Francisco.

    Google Scholar 

  • Lindstrom, E., Lindstrom, P., Berglund, A., Lundgren, E. and Mild, K.H. 1995, Intracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 16: 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Li-Smerin, Y., Hackos, D.H., and Swartz, K.J., 2000, α-Helical structural elements within the voltage-sensing domain of a K+ channel. J. General Physiology 115: 33–49.

    Article  CAS  Google Scholar 

  • Lovely, R.H., Creim, J.A., Miller, D.L., and Anderson, L.E., 1993, Behavior of rats in a radial arm maze during exposure to magnetic fields: Evidence for effects of magnesium ion resonance. 15th annual meeting Bioelectromagnetics Society, Abstract EI-6, Los Angeles.

    Google Scholar 

  • Lyle, D.B., Wang, X., Ayotte, R.D., Sheppard, A.R., and Adey, W.R. 1991, Calcium uptake by leukemic and normal T-lymphocytes exposed to low frequency magnetic fields. Bioelectromagnetics 12: 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Lyskov, Y.B., Chernysev, M.V., Michailov, V.O., Kozlov, A.P., Makarova, T.M., Vasilyeva, Y.V., Druzin, M.Y., Sokolov, G.V., and Vishnevski, A.M., 1996, The effect of a magnetic field with the frequency of 50 Hz on behavior in rats depends on the value of the constant magnetic field. Biophysics 41: 881–886.

    Google Scholar 

  • McLeod, B.R., Smith, S.D., Cooksey, K.E., and Liboff, A.R. 1987a, Ion cyclotron resonance frequencies enhance Ca2+-dependent motility in diatoms. J. of Bioelectricity 6: 1–12.

    CAS  Google Scholar 

  • McLeod, B.R., Smith, S.D., and Liboff, A.R. 1987b, Calcium and potassium cyclotron resonance curves and harmonics in diatoms. J. of Bioelectricity 6: 153–168.

    CAS  Google Scholar 

  • Mohri, K., and Fukushima, M., 2002, Gradual decreasing characteristics and temperature stability of electric resistivity in water triggered with milligauss AC field. IEEE Trans. On Magnetics 38: 3353–3355.

    Article  CAS  Google Scholar 

  • Novikoff, V.V., and Zhadin, M.N., 1994, Combined action of weak constant and variable low-frequency magnetic fields on ionic currents in aqueous solutions of amino acids. Biophysics 39: 41–45.

    Google Scholar 

  • Parkinson, W.C., and Hanks, C.T. 1989, Search for cyclotron resonance in cells in vitro. Bioelectromagnetics 10: 129–145.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, W.C., and Sulik, G.L., 1992, Diatom response to extremely low frequency magnetic fields. Radiation Research 130: 319–330.

    PubMed  CAS  Google Scholar 

  • Prasad, A.V., Miller, M.W., Cox, C., Carstensen, E.L., Hops, H., and Brayman, A.A., 1994, A test of the influence of cyclotron resonance exposures on diatom motilty. Health Physics 66: 305–312.

    PubMed  CAS  Google Scholar 

  • Prato F.S., Carson J.L., Ossenkopp K.P., and Kavaliers M., 1995, Possible mechanism by which extremely low frequency magnetic fields affect opioid function. FASEB J. 9: 807–814.

    PubMed  CAS  Google Scholar 

  • Prato, F.S., Kavaliers, M., Cullen, A.P., and Thomas, A.W., 1997, Light-dependent and-independent behavioral effects of extremely low frequency magnetic fields. Bioelectromagnetics 18: 284–291.

    Article  PubMed  CAS  Google Scholar 

  • Prato, F.S., Kavaliers, M., and Thomas, A.W., 2000, Extremely low frequency magnetic fields can either increase or decrease analgesia in the land snail depernding on field and light conditions. Bioelectromagnetics 21: 287–301.

    Article  PubMed  CAS  Google Scholar 

  • Rai, S., Singh U.P., and Singh A.K., 1995, X-ray determination of magnetically treated liquid water structure. Electro-MagnetoBiology 14: 25–30.

    Google Scholar 

  • Reese, J.A, Frazier, M.E., Morris, J.E., Buschbom, R.L., and Miller, D.L. 1991, Evaluation of changes in diatom motility after exposure to 16-Hz electromagnetic fields. Bioelectromagnetics 12: 21–25.

    Article  PubMed  CAS  Google Scholar 

  • Regling C., Brueckner, C., Liboff A.R., and Kimura J.H., 2002, Evidence for ICR magnetic field effects on cartilage and bone development in embryonic chick bone explants (abstract). Orthopedic Research Society, 48th annual meeting, Dallas.

    Google Scholar 

  • Reinbold, K.A., and Pollack, S.R. 1997, Serum plays a critical role in modulating [Ca2+]c of primary cell culture bone cells exposed to weak ion-resonance magnetic fields. Bioelectromagnetics 18: 203–214.

    Article  PubMed  CAS  Google Scholar 

  • Rochev, Y.A., Narimanov, A.A., Sosunov, E.A., Kozlov, A.N., and Lednev, V.V. 1990, effects of weak magnetic field on the rate of cell proliferation in cell culture. Studia Biophysica 135: 93–98.

    Google Scholar 

  • Ross, S.M. 1990, Combined DC and ELF magnetic fields can alter cell proliferation. Bioelectromagnetics 11: 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Rozek, R.J., Sherman, M.L., Liboff, A.R., McLeod, B.R., and Smith, S.D., 1987, Nifedipene is an antagonist to cyclotron resonance enhancement of 45Ca incorporation in human lymphocytes. Cell Calcium 8: 413–427.

    Article  PubMed  CAS  Google Scholar 

  • Ryaby, J.T., Grande, D.A., Magee, F.P., and Weinstein, A.M 1993a, The effects of combined AC/DC magnetic fields on resting articular cartilage metabolism. In Blank, M., Ed., Electricity and Magnetism in Biology and Medicine, San Francisco Press, San Francisco.

    Google Scholar 

  • Ryaby, J.T., Magee, F.P., Weinstein, A.M., Fitzsimmons, R.J., and Baylink, D.J., 1993b, Prevention of experimental osteopenia by use of combined magnetic fields. In Blank, M., Ed., Electricity and Magnetism in Biology and Medicine, San Francisco Press, San Francisco.

    Google Scholar 

  • Saalman, E., Galt, S., Hamnerius, Y., and Norden, B. 1992, Diatom motility: Replication study in search of cyclotron resonance effects. In Norden, B., and Ramel, C., Eds. Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems, Oxford University Press, Oxford, pp. 280–292.

    Google Scholar 

  • Sandweiss, J., 1990, On the cyclotron resonance model of ion transport. Bioelectromagnetics 11: 203–205.

    Article  PubMed  CAS  Google Scholar 

  • Shuvalova, L.A., Ostrovskaja, M.V., Sosunov, E.A., and Lednev, V.V., 1991, Effect of weak magnetic field in the parametric resonance mode on the rate of calmodulin-dependent phosphorylation of myosin in the solution. Doklady Akademii Nauk SSSR (Reports of the Academy of Science of the USSR; in Russian) 317: 227–230.

    PubMed  CAS  Google Scholar 

  • Smith S.D., McLeod B.R., Liboff A.R., and Cooksey K., 1987, Calcium cyclotron resonance and diatom motility. Bioelectromagnetics 8: 215–227.

    Article  PubMed  CAS  Google Scholar 

  • Smith S.D., Liboff A.R., and McLeod, B.R., 1991, Effects of resonant magnetic fields on chick femoral development in vitro. J. Bioelectricity 10: 81–99.

    CAS  Google Scholar 

  • Smith, S.D., Liboff A.R., McLeod, B.R., and Barr, E.J. 1992, Effects of ion resonance tuned magnetic fields on N-18 neuroblastoma cells. In Allen, M.J., Cleary, A.F., Sowers, A.E., and Shillady, D.D., Eds Charge and Field Effects in Biosystems-3, Birkhauser, Boston, pp. 263–271.

    Google Scholar 

  • Smith S.D., McLeod B.R., and Liboff A.R., 1993, Effects of CR-tuned 60 Hz magnetic fields on sprouting and early development of Raphanus sativus. Bioelectricity and Bioenergetics 32: 67–76.

    Article  Google Scholar 

  • Smith, S.D., McLeod, B.R., and Liboff, A.R., 1995, Testing the ion cyclotron resonance theory of electromagnetic field interaction with odd and even harmonic tuning for cations. Bioelectrochemistry and Boenergetics 38: 161–167.

    Article  CAS  Google Scholar 

  • Smith, S.D., Liboff, A.R., and McLeod, B.R., 2000, Potassium ion cyclotron resonance magnetic fields stimulate germination. Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields. Heraclion, Crete, Greece. pp. 347–351.

    Google Scholar 

  • Stern, S., Laties, V.G., Nguyen, Q.A., and Cox, C., 1996, Exposure to combined static and 60Hz magnetic fields: Failure to replicate a reported behavioral effect. Bioelectromagnetics 17: 279–292.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Keneko, I., Date, M., and Fukada, E., 1986, Effect of pulsing electromagnetic fields on DNA synthesis in mammalian cells in culture Experentia. 42: 185–186.

    Article  CAS  Google Scholar 

  • Tiras, K.P., Srebnitskaya, L.K., Il’jasova, A.A., and Lednev, V.V., 1996, The influence of weak combined magnetic fields on the rate of regeneration in planarian Dugesia tigrina. Biophysics 42: 826–831.

    Google Scholar 

  • Tofani, S., Ferrara, A., Anglesio, L., and Gilli, G., 1995, Evidence for genotoxic effects of resonant ELF magnetic fields. Bioelectrochemistry and Bioenergetics 36: 9–13.

    Article  CAS  Google Scholar 

  • Thomas, J.R., Schrot, J., and Liboff, A.R., 1986, Low-intensity magnetic fields alter operant behavior in rats. Bioelectromagnetics 7: 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Tipler, P., 1982, Physics, 2cd edition, volume 2, Worth Publishers, p. 729.

    Google Scholar 

  • Tohtz, S.W., 1996, The influence of ultra weak magnetic fields on growth and differentiation using the ICR hypothesis: an experimental study on radish seedlings and a theoretical discussion on relevant aspects of cartilage, bone, and other connective tissues. Ph.D. Dissertation, Medical Faculty of Humboldt University, Berlin (in German).

    Google Scholar 

  • Trillo, M.A., Ubeda,. A., Blanchard, J.P., House, D.E., and Blackman, C.F., 1996, Magnetic fields at resonant conditions for the hydrogen atom can affect neurite outgrowth in PC-12 cells. Bioelectromagnetics 17: 10–20.

    Article  PubMed  CAS  Google Scholar 

  • Ueno S. and Iwasake M., 1994, Properties of diamagnetic fluid in high gradient magnetic fields. J. Applied Physics 75: 7177–7179.

    Article  Google Scholar 

  • Weaver, J.C., and Astumian, R.D., 1990, The response of living cells to very weak magnetic fields: The thermal noise limit. Science 247: 459–462.

    PubMed  CAS  Google Scholar 

  • Yost, M.G., and Liburdy, R.P., 1992, Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Letts 296: 117–122.

    Article  CAS  Google Scholar 

  • Zhadin M.N., Novikoff V.V., Barnes F.S., and Pergola, M.F., 1998, Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics 19: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Zhadin M.N., 1998, Combined action of static and alternating magnetic fields on ion motion in a macromolecule: Theoretical aspects. Bioelectromagnetics 19: 279–292.

    Article  PubMed  CAS  Google Scholar 

  • Zhadin M.N., Deryugina O.N., and Pisachenko T.M., 1999, Influence of combined DC and AC magnetic fields on rat behavior. Bioelectromagnetics 20: 378–386.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Liboff, A.R. (2005). The Charge-to-Mass ICR Signature in Weak ELF Bioelectromagnetic Effects. In: Lin, J.C. (eds) Advances in Electromagnetic Fields in Living Systems. Advances in Electromagnetic Fields in Living Systems, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-24024-1_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-24024-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23997-2

  • Online ISBN: 978-0-387-24024-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics