Skip to main content

Ultra High Temperature Ceramic Composites

  • Chapter
Book cover Handbook of Ceramic Composites

Abstract

Ceramic borides, carbides and nitrides are characterized by high melting points, chemical inertness and relatively good oxidation resistance in extreme environments, such as conditions experienced during reentry. This family of ceramic materials has come to be known as Ultra High Temperature Ceramics (UHTCs). Some of the earliest work on UHTCs was conducted by the Air Force in the 1960’s and 1970’s. Since then, work has continued sporadically and has primarily been funded by NASA, the Navy and the Air Force. This article summarizes some of the early works, with a focus on hafnium diboride and zirconium diboride-based compositions. These works focused on identifying additives, such as SiC, to improve mechanical or thermal properties, and/or to improve oxidation resistance in extreme environments at temperatures greater than 2000°C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaufman, L. and Clougherty, E. V. “Investigation of Boride Compounds for Very High Temperature Applications,” RTD-TRD-N63-4096, Part III, ManLabs Inc., Cambridge, MA, (March 1966).

    Google Scholar 

  2. Clougherty, E. V, Kalish, D. and Peters, E. T. “Research and Development of Refractory Oxidaton Resistant Diborides,” AFML-TR-68-190, ManLabs Inc., Cambridge, MA, (1968).

    Google Scholar 

  3. Gangler, J. J. “NASA Research on Refractory Compounds,” High Temp. High Press. [3] 487–502 (1971).

    CAS  Google Scholar 

  4. Clougherty, E. V, Hill, R. J, Rhodes, W. and Peters, E. T. “Research and Development of Refractory Oxidaton Resistant Diborides,” AFML-TR-68-190, Part II Vol. II, ManLabs Inc., Cambridge, MA, (1970).

    Google Scholar 

  5. Opeka, M. M., Talmy, I. G., Wuchina, E. J., Zaykoski, J. A. and Causey, S. J., “Mechanical, Thermal and Oxidation Properties of Refractory Hafnium and Zirconium Compounds,” J. Europ. Ceram. Soc., [19] 2405–2414 (1999).

    Article  CAS  Google Scholar 

  6. Courtright, E. L., Graham, H. C., Katz, A. P. and Kerans, R. J. “Ultra High Temperature Assessment Study — Ceramic Matrix Composites,” AFWAL-TR-91-4061, Wright Patterson Air Force Base, Ohio (1992).

    Google Scholar 

  7. Cutler, R. A. “Engineering Properties of Borides,” in ASTM Engineered Materials Handbook, Vol. 4 — Ceramics and Glasses, Schneider, S. J., technical chairman, p. 787–803 (1991).

    Google Scholar 

  8. Guillermet, A. F. and Grimvall, G. “Phase Stability Properties of Transition Metal Diborides,” Am. Inst. Phy. Conf. Proc., [231] 423–431 (1991).

    Google Scholar 

  9. Mroz, C. “Annual Mineral Review; Zirconium Diboride,” Am. Ceram. Soc. Bull. [74] 165–166 (1995).

    Google Scholar 

  10. Upadhya, K., Yang, J. M. and Hoffmann, W.P. “Materials for Ultrahigh Temperature Structural Applications,” Am. Ceram. Soc. Bull. [58] 51–56 (1997).

    Google Scholar 

  11. Monteverde, F., Bellosi, A. and Guicciardi, S. “Processing and Properties of Zirconium Diboride-Based Composites,” J. Europ. Ceram. Soc. [22] 279–288 (2002).

    Article  CAS  Google Scholar 

  12. Low, I. M. and McPherson, R. “Fabrication of New Zirconium Boride Ceramics,” J. Mat. Sci. Lett. [8] 1281–1283 (1989).

    Article  CAS  Google Scholar 

  13. Kolodziej, P., Salute, J. and Keese, D. L. “First Flight Demonstration of a Sharp Ultra-High Temperature Ceramic Nosetip,” NASA TM-112215, (December 1997).

    Google Scholar 

  14. Kontinos, D. A., Gee, K. and Prabhu, D. K., “Temperature Constraints at the Sharp Leading Edge of a Crew Transfer Vehicle,” AIAA 2001-2886 (June 2001).

    Google Scholar 

  15. Shaffer, P. T. B. “Engineering Properties of Carbides,” in ASTM Engineered Materials Handbook, Vol. 4 — Ceramics and Glasses, Schneider, S. J., technical chairman, p. 804–811 (1991).

    Google Scholar 

  16. Battelle Columbus Laboratories. “Engineering Property Data on Selected Ceramics” Vol. 2: Carbides. Metals and Ceramics Information Center, Battelle Columbus Laboratories, Report MCIC-HB-07-Vol. 2 (1979).

    Google Scholar 

  17. Hampshire, S. “Engineering Properties of Nitrides,” in ASTM Engineered Materials Handbook, Vol. 4 — Ceramics and Glasses, Schneider, S. J., technical chairman, p. 812–820 (1991).

    Google Scholar 

  18. Spear, K. E. “Chemical Bonding in AlB2-Type Borides,” J. Less-Common Metals, [47] 195–201 (1976).

    Article  CAS  Google Scholar 

  19. Burdett, J. K., Canadell, E. and Miller, G. J. “Electronic Structure of Transition Metal Borides with the AlB2 Structure,” J. Am. Chem. Soc., [108] 6561–6568 (1986).

    Article  CAS  Google Scholar 

  20. Samsonov, G. V. and Vinitskii, I. M. Handbook of Refractory Compounds, Plenum Press (1980).

    Google Scholar 

  21. Guillermet, A. F. and Grimvall, G. “Bonding Properties and Vibrational Entropy of Transition Metal MeB2 (AlB2) Diborides,” J. Less-Common Metals, [169] 257–281 (1991).

    Article  Google Scholar 

  22. Jenkins, R. et al., Joint Committee on Powder Diffraction Standards. Powder Diffraction File: from the International Center for Diffraction Data. Swarthmore, PA (1988).

    Google Scholar 

  23. Schwetz, K. A., Reinmoth, K. and Lipp, A. Production and Industrial Uses of Refractory Borides, Vol. 3, Radex Rundschau, 568–585 (1981).

    Google Scholar 

  24. McColm, I. C. Ceramic Science for Materials Technologists, Leonard Hill, London, 330–343 (1983).

    Google Scholar 

  25. Exner, H. E. Int. Metall. Rev., [24] 149–173 (1979).

    CAS  Google Scholar 

  26. Pankratz, L. B., Stuve, J. M. and Gokcen, N. A. “Thermodynamic Data for Mineral Technology,” Buelletin 677, U.S. Bureau of Mines, 98–102 (1984).

    Google Scholar 

  27. Hedrick, J. B. “Zirconium and Hafnium,” U.S. Geological Survey Minerals Yearbook, 86.2–86.8 (1999).

    Google Scholar 

  28. Kalish, D. and Clougherty, E. V. “Fundamental Study of the Sintering Kinetics of Refractory Compound Phases at High Pressure and High Temperature,” Contract No. 426200, Summary Report (October 1966).

    Google Scholar 

  29. Clougherty, E. V., Pober, R. L. and Kaufman, L., “Synthesis of Oxidation Resistant Metal Diboride Composites,” Trans. TMS-AIME, [242] 1077–1082 (1968).

    CAS  Google Scholar 

  30. Samsonov, G.V. and Serebryakova, T. I. “Classification of Borides,” Sov. Powder Metall. Met. Ceram. (English Translation), [17] 116–120 (1978).

    Article  Google Scholar 

  31. Clougherty, E. V., Wilkes, K. E. and Tye, R. P. “Research and Development of Refractory Oxidation Resistant Diborides,” Part II, Vol. V: Thermal, Physical, Electrical and Optical Properties, AFML-TR-68-190, ManLabs Inc., Cambridge, MA, (1969).

    Google Scholar 

  32. Munro, R. G., “Material Properties of a Sintered alpha-SiC,” J. Physical and Chemical Reference Data, [26] 1195–1203 (1997).

    Article  CAS  Google Scholar 

  33. Rhodes, W. H., Clougherty, E.V. and Kalish, D. “Research and Development of Refractory Oxidation Resistant Diborides,” Part II, Vol. IV: Mechanical Properties, AFML-TR-68-190, ManLabs Inc., Cambridge, MA, (1970).

    Google Scholar 

  34. Lynch, J. F., Ruderer, C. G. and Duckworth, W. H. “Borides,” in Engineering Properties of Ceramics. American Ceramic Society — Columbus, OH. p. 5.4.1–6, 5.4.5–6 (1966).

    Google Scholar 

  35. Perkins, R., Kaufman, L. and Nesor, H. “Stability Characterization of Refractory Materials Under Velocity Atmospheric Flight Conditions,” Experimental Results of High Velocity Cold Gas/Hot Wall Test, Part III Vol. II, AFML-TR-68-84, ManLabs Inc., Cambridge, MA, (1969).

    Google Scholar 

  36. Tripp, W. C., Davis, H. H. and Graham, H. C. “Effect of an SiC Addition on the Oxidation of ZrB2,” Ceramic Bulletin, [52] 612–616 (1973).

    CAS  Google Scholar 

  37. Kaufman, L. and Clougherty, E. V. and Berkowitz-Mattuck, J. B. “Oxidation Characterastics of Hafnium and Zirconium Diboride,” Trans. TMS-AIME, [239] 458–466 (1967).

    CAS  Google Scholar 

  38. Berkowitz-Mattuck, J. B., “High Temperature Oxidation — Zirconium and Hafnium Diborides,” J. Electrochem. Soc., [113] 908–914 (1966).

    CAS  Google Scholar 

  39. Strife, J. R. and Sheehan, J. E., “Ceramic Cotings for Carbon-Carbon Composites,” Ceramic Bull. [67] 369–374 (1988).

    CAS  Google Scholar 

  40. Schiroky, G. H., Price, R. J. and Sheehan, J. E., “Oxidation Charcteristics of CVD Silicon Carbide and Silicon Nitride,” GA-A18696, General Atomics, La Jolla, CA (1986).

    Google Scholar 

  41. Schlichting, J., “Oxygen Transport Through Silica Surface Layers on Silicon-Containing Ceramic Materials,” High Temp.-High Press. [14] 717–724 (1982).

    CAS  Google Scholar 

  42. Laurenko, V. A. and Alexeev, A. F., “Oxidation of Sintered Aluminum Nitride,” Ceramic International [9] 80 (1983).

    Article  Google Scholar 

  43. Chung, S. K. “Fracture Characterization of Armor Ceramics,” Am. Ceram. Soc. Bull. [69] 358–366 (1990).

    CAS  Google Scholar 

  44. Lasday, S. B. “Alpha Silicon Carbide Properties Advantageous for Automotive Water Pump Seal Faces Produced at New Facility in W. Germany,” Ind. Heat. [35–39] (1990).

    Google Scholar 

  45. Kittel, C. Introduction to Solid State Physics, John Wiley & Sons (1975).

    Google Scholar 

  46. Kaufman, L. and Nesor, H. “Stability Characterization of Refractory Materials Under High Velocity Atmospheric Flight Conditions,” Part II Vol. II, AFML-TR-69-84, ManLabs Inc., Cambridge, MA, (1969).

    Google Scholar 

  47. Kaufman, L. and Nesor, H. “Stability Characterization of Refractory Materials Under High Velocity Atmospheric Flight Conditions,” Part III Vol. I, AFML-TR-69-84, ManLabs Inc., Cambridge, MA, (1969).

    Google Scholar 

  48. Kaufman, L. and Nesor, H. “Stability Characterization of Refractory Materials Under High Velocity Atmospheric Flight Conditions,” Part III Vol. II, AFML-TR-69-84, ManLabs Inc., Cambridge, MA, (1969).

    Google Scholar 

  49. Kaufman, L. and Nesor, H. “Stability Characterization of Refractory Materials Under High Velocity Atmospheric Flight Conditions,” Part II Vol. III, AFML-TR-69-84, ManLabs Inc., Cambridge, MA, (1969).

    Google Scholar 

  50. Kaufman, L. and Nesor, H. “Stability Characterization of Refractory Materials Under High Velocity Atmospheric Flight Conditions,” Part III Vol. III, AFML-TR-69-84, ManLabs Inc., Cambridge, MA, (1970).

    Google Scholar 

  51. Kingery, W. D. “Factors Affecting Thermal Stress Resistance of Ceramic Materials,” J. Am. Ceram. Soc., [3] (1955).

    Google Scholar 

  52. Clougherty, E. V., Niesz, D. E. and Mistretta, A. L. “Research and Development of Refractory Oxidation-Resistant Diborides,” Thermal Stress Resistance, Part II Vol. VI, AFML-TR-68-190, ManLabs Inc., Cambridge, MA, (1968).

    Google Scholar 

  53. Woo, S. K., Kim, C. H. and Kang, E. S. “Fabrication and Microstructural Evaluation of ZrB2/ZrC/Zr Composites by Liquid Infiltration,” J. Mat. Sci. [2] 5309–5315 (1994).

    Google Scholar 

  54. Zhang, G., Deng, Z., Kondo, N., Yang, J. and Ohji, T. “Reactive Hot Pressing of ZrB2-Sic Composites,” J. Am. Ceram. Soc. [83] 2330–2332 (2002).

    Article  Google Scholar 

  55. Levine, S., Opila, E., Halbig, M., Kiser, J., Singh, M. and Salem, J., “Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use,” J. Europ. Ceram. Soc. [22] 2757–2767 (2002).

    Article  CAS  Google Scholar 

  56. Bargeron, C. B., Benson, R. C., Newman, R. W., Jette, A. N. and Phillips, T. E. “Oxidation Mechanisms of Hafnium Carbide and Hafnium Diboride in the Temperature Range 1400–2100C,” Johns Hopkins APL Technical Digest, [14] 29–35 (1993).

    CAS  Google Scholar 

  57. Monteverde, F. and Bellosi, A. “Effect of the Addition of Silicon Nitride on Sintering Behavior and Microstructure of Zirconium Diboride,” Scripta Materialia, [46] 223–228 (2002).

    Article  CAS  Google Scholar 

  58. Monteverde, F., Bellosi, A and Guicciardi, S. “Processing and Properties of Zirconium Diboride-Based Composites,” J. Europ. Ceram. Soc., [22] 279–288 (2002).

    Article  CAS  Google Scholar 

  59. Shimada, S. “A Thermoanalytical Study on the Oxidation of ZrC and HfC Powders with Formation of Carbon,” Solid State Ionics, [149] 319–326 (2002).

    Article  CAS  Google Scholar 

  60. Gasch, M., Ellerby, D., Irby, E., Beckman, S., Gusman, M. and Johnson, S., “Processing and Properties of Hafnium Diboride/Silicon Carbide Ultra High Temperature Ceramics,” To be published in J. of Materials Science (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gasch, M.J., Ellerby, D.T., Johnson, S.M. (2005). Ultra High Temperature Ceramic Composites. In: Bansal, N.P. (eds) Handbook of Ceramic Composites. Springer, Boston, MA . https://doi.org/10.1007/0-387-23986-3_9

Download citation

Publish with us

Policies and ethics