Skip to main content

Chemical Vapor Infiltrated SiC/SiC Composites (CVI SiC/SiC)

  • Chapter
Book cover Handbook of Ceramic Composites

Abstract

CVI SiC/SiC composites are manufactured via Chemical Vapor Infiltration Process. The SiC-based matrices are deposited from gaseous reactants on to a heated substrate of SiC fiber preforms. An interphase coated on the fibers allows control of damage and mechanical behavior.

The advantageous properties of CVI SiC/SiC composites such as their excellent high temperature strength, creep and corrosion resistances, low density, high toughness, resistance to shocks, fatigue and damage, and reliability make them ideal candidates for the replacement of metals and ceramics in many engineering applications involving loads, high temperatures and aggressive environments. Mechanical properties exhibit features that differentiate CVI SiC/SiC composites from monolithic ceramics and glasses, from other ceramic matrix composites and from other composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Sheppard, Progress in composites processing, Ceramic Bulletin 69 666–673 (1990).

    Google Scholar 

  2. J-J. Choury, Thermostructural composite materials in aeronautics and space applications, Proceedings of GIFAS Aeronautical and Space Conference, Bangalore, Delhi, India, 1–18, February 1989.

    Google Scholar 

  3. E. Bouillon, G. Habarou, P. Spriet, J. Lecordix, D. Feindel, D. Stetson, G. Ojard, G. Linsey, Characterization and nozzle test experience of a self sealing ceramic matrix composite for gas turbine applications, Proceedings of IGTI/ASME TURBO EXPO Land, Sea and Air 2002, Amsterdam, The Netherlands, June 3–6, 2002.

    Google Scholar 

  4. M. Van Roode, Ceramic matrix composite development for combustors for industrial gas turbines, The 27th Annual Cocoa Beach Conference and Exposition on Advanced Ceramics and Composites, January 26–31, 2003, Cocoa Beach, Florida, paper ECD-S1-16-2003.

    Google Scholar 

  5. R. H. Jones, SiC/SiC composite for advanced nuclear applications, The 27th Annual Cocoa Beach Conference and Exposition on Advanced Ceramics and Composites, January 26–31, 2003, Cocoa Beach, Florida, paper ECD-S1-18-2003.

    Google Scholar 

  6. G. Aiello, CVI SiC/SiC composites as structural components in fusion power reactors (“Utilisation des composites à matrice céramique SiC/SiC comme matériau de structure de composants internes du tore d’un réacteur à fusion”), Ph.D. thesis, University of Evry (France), 2000.

    Google Scholar 

  7. P. Fenici, H. W. Scholtz, Advanced low activation materials fiber reinforced ceramic composites, Journal of Nuclear Materials 212–215 (1994).

    Google Scholar 

  8. R. H. Jones, C. H. Henager, Jr., G. G. Youngblood, H. L. Heinisch, SiC/SiC composites for structural applications in fusion energy systems, Fusion Technology 30 (1996).

    Google Scholar 

  9. K. K. Chawla, Ceramic matrix composites, Chapman & Hall, London (1993).

    Google Scholar 

  10. R. Naslain, F. Langlais, CVD-processing of ceramic-ceramic composite materials, in Tailoring Multiphase and Composite Ceramics, R. E. Tressler, G. Messing, C. G. Pantano, R. E. Newnham eds., Plenum Publishing Corporation (1986), p.145–164.

    Google Scholar 

  11. F. Langlais, Chemical vapor infiltration processing of ceramic matrix composites, in Comprehensive Composite Materials, A. Kelly and C. Zweben eds., Elsevier (2000) chap. 4.20, pp. 611–644.

    Google Scholar 

  12. F. Christin, R. Naslain, C. Bernard, A thermodynamic and experimental approach to silicon carbide CVD. Application to the CVD-infiltration of porous carbon composites, in Proc. 7th Int. Conf. CVD, T. O. Sedwick and H. Lydin, eds., The Electrochem. Soc., Princeton, (1979) p. 499.

    Google Scholar 

  13. F. Christin, R. Naslain, P. Hagenmuller, J-J. Choury, Pièce poreuse carbonée densifiée in-situ par dépôt chimique en phase vapeur de matériaux réfractaires autres que le carbone et procédé de fabrication — French patent, 77/26979, Sept. 1977.

    Google Scholar 

  14. L. Heraud, F. Christin, R. Naslain and P. Hagenmuller, Properties and applications of oxidation resistant composite materials obtained by SiC-infiltration, Proc. 8th Int. Conf. CVD, J. M. Blocher et al. eds., The Electrochem. Soc., Pennington (1981), p. 782.

    Google Scholar 

  15. E. Fitzer, Chemical vapor deposition of SiC and Si3N4, Proc. Int. Symp. on Factors in Densification and Sintering of Oxide and Non Oxide Ceramics, Hakone, Japan (1978), p. 40.

    Google Scholar 

  16. F. Lamouroux, R. Pailler, R. Naslain, M. Cataldi, French Patent no 95 14843 (1995).

    Google Scholar 

  17. P. Forio, J. Lamon, Fatigue behavior at high temperatures in air of a 2D SiC/Si-B-C composite with a self-healing multilayered matrix, Ceramic Transactions Vol. 128, American Ceramic Society, Westerville (OH), (2001), pp. 127–141.

    Google Scholar 

  18. A. J. Caputo, W. J. Lackey, D. P. Stinton, Development of a new faster process for the fabrication of ceramic fiber-reinforced ceramic composites by chemical vapor infiltration, Ceramic Engineering and Science Proceedings, vol. 6, July–August 1984, pp. 694–705.

    Article  Google Scholar 

  19. S. Bertrand, Lifetime of SiC/SiC minicomposites with nanometer scale multilayered interphases, Ph.D. Thesis, no 1927, University of Bordeaux, 28 september 1998.

    Google Scholar 

  20. C. Droillard, J. Lamon, Fracture toughness of 2D woven SiC/SiC CVI composites with multilayered interphases, Journal of the American Ceramic Society 79[4] 849–858 (1996).

    Article  CAS  Google Scholar 

  21. J. Lamon, A micromechanics-based approach to the mechanical behavior of brittle-matrix composites, Composites Science and Technology 61 2259–2272 (2001).

    Article  Google Scholar 

  22. V. Calard, J. Lamon, A probabilistic-statistical approach to the ultimate failure of ceramic-matrix composites — Part I: experimental investigation of 2D woven SiC/SiC composites, Composites Science and Technology 62 385–393 (2002).

    Article  CAS  Google Scholar 

  23. J. C. McNulty, F. W. Zok, Application of weakest-link fracture statistics to fiber-reinforced ceramic-matrix composites, J. Am. Ceram. Soc. 80 1535–1543 (1997).

    Article  CAS  Google Scholar 

  24. R. Naslain, Fiber-matrix interphases and interfaces in ceramic matrix composites processed by CVI, Composite Interfaces 1 253–258 (1993).

    CAS  Google Scholar 

  25. F. Rebillat, J. Lamon, A. Guette, The concept of a strong interface applied to SiC/SiC composites with a BN interphase, Acta Mater. 48 4609–4618 (2000).

    Article  CAS  Google Scholar 

  26. A. Lacombe, J-M. Rougès in AIAA’ 90, Space program and Technologies Conference’ 90, Huntsville, AL, September, 1990, Am. Inst. Of Aero. and Astro., Washington, DC, AIAA-90-3837.

    Google Scholar 

  27. D. Rouby, P. Reynaud, Fatigue behavior related to interface modification during load cycling in ceramic-matrix fibre composites, Composites Science and Technology 48 109–118 (1993).

    Article  CAS  Google Scholar 

  28. P. Lamicq, G. A. Bernhart, M. Dauchier, J. Mace, SiC/SiC composite ceramics, American Ceramic Society Bulletin 64 336–338 (1986).

    Google Scholar 

  29. P. Carrère, J. Lamon, Fatigue behavior at high temperature in air of a 2D woven SiC/Si-B-C composite with a self healing matrix, Key Engineering Materials, Trans. Tech. Publications, Switzerland, 164–165 357–360 (1999).

    Google Scholar 

  30. S. Bertrand, R. Pailler, J. Lamon, Influence of strong fiber-coating interfaces on the mechanical behavior and lifetime of Hi-Nicalon/(PyC-SiC)n/SiC minicomposites, J. Am. Ceram. Soc. 84 787–794 (2001).

    CAS  Google Scholar 

  31. P. Carrère, J. Lamon, Creep behavior of a SiC/Si-B-C composite with a self-healing multilayered matrix, J. Eur. Ceram. Soc. 23 1105–1114 (2003).

    Article  Google Scholar 

  32. F. Abbé, Flexural creep behavior of a 2D SiC/SiC composite. Ph. D. thesis, University of Caen, 1990.

    Google Scholar 

  33. J. W. Holmes, J-L. Chermant, Creep behaviour of fiber reinforced ceramic matrix composites, in High Temperature Ceramic Matrix Composites, R. Naslain et al. eds., Woodhead, UK (1993), pp. 633–647.

    Google Scholar 

  34. A. G. Evans, C. Weber, Creep damage in SiC/SiC composites, Mater. Sci. Eng. A 208 1–6 (1996).

    Article  Google Scholar 

  35. R. Bodet, J. Lamon, N. Jia, R. Tressler, Microstructural stability and creep behavior of Si-C-O (Nicalon) fibers in carbon monoxide and argon environment, J. Am. Ceram. Soc. 79 2673–2686 (1996).

    Article  CAS  Google Scholar 

  36. J. Lamon, F. Rebillat, A. G. Evans, Microcomposite test procedure for evaluating the interface properties of ceramic matrix composites, J. Am. Ceram. Soc., 78 401–405 (1995).

    Article  CAS  Google Scholar 

  37. N. Lissart, J. Lamon, Damage and failure in ceramic matrix minicomposites: experimental study and model, Acta Metall. 45 1025 (1997).

    CAS  Google Scholar 

  38. F. Rebillat, J. Lamon, R. Naslain, E. Lara-Curzio, M. K. Ferber, T. Besmann, Interfacial bond strength in SiC/C/SiC composite materials as studied by single-fiber push-out tests, J. Am. Ceram. Soc., 81 965 (1998).

    Article  CAS  Google Scholar 

  39. F. Rebillat, J. Lamon, R. Naslain, E. Lara-Curzio, M. K. Ferber, T. Besmann, Properties of multilayered interphases in SiC/SiC chemical-vapor-infiltrated composites with “weak” and “strong” interfaces, J. Am. Ceram. Soc., 81 2315–2326 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lamon, J. (2005). Chemical Vapor Infiltrated SiC/SiC Composites (CVI SiC/SiC). In: Bansal, N.P. (eds) Handbook of Ceramic Composites. Springer, Boston, MA . https://doi.org/10.1007/0-387-23986-3_3

Download citation

Publish with us

Policies and ethics