Skip to main content

Molecular Mechanisms Mediating Neuronal Cell Death in Experimental Models of Prion Diseases, in vitro

  • Chapter
  • 880 Accesses

11.1. Summary

In this chapter we will review the growing bulk of experimental observations regarding the modulation of intracellular pathways mediating the neuronal cell death in in vitro models of prion diseases. In particular the effects of the prion-derived peptide PrP106–126 in different cell culture models will be described. PrP106–126 represents the first experimental approach to the prion-dependent neurotoxicity that has now been largely accepted by the scientific community.

This peptide, although incompletely, reproduces in vitro many of the biochemical and pathological characteristics of the PrPSc, allowing a detailed analysis of the signal transduction mediating the prion toxicity.

The analysis will be focused on the different intracellular pathways modulated by PrP106–126, or related peptides, to induce neuronal cell death in both primary neuronal cultures or neuronal-like cell lines, in relation with its the structural characteristics. In particular the effects of this peptide on the intracellular ion concentration, MAP kinase cascades and radical oxygen species generation will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Forloni, N. Angeretti, R. Chiesa, E. Monzani, M. Salmona, O. Bugiani and F. Tagliavini. Neurotoxicity of a prion protein fragment. Nature. 362, 543–546. (1993)

    Article  PubMed  Google Scholar 

  2. T. Florio, M. Grimaldi, A. Scorziello, M. Salmona, O. Bugiani, F. Tagliavini, G. Forloni and G. Schettini. Intracellular calcium rise through L-type calcium channels, as molecular mechanism for prion protein fragment 106–126-induced astroglial proliferation. Biochem Biophys Res Commun. 228, 397–105. (1996)

    Article  PubMed  Google Scholar 

  3. D. R. Brown, B. Schmidt and H. A. Kretzschmar. A prion protein fragment primes type 1 astrocytesto proliferation signalsfrom microglia. Neurobiol Dis. 4, 410–422. (1998)

    Article  PubMed  Google Scholar 

  4. M. Ettaiche, R. Pichot, J. P. Vincent and J. Chabry. In vivo cytotoxicity of the prion protein fragment 106–126. J Biol Chem. 275, 36487–36490. (2000)

    PubMed  Google Scholar 

  5. R. Chiesa and D. A. Harris. Prion diseases: what is the neurotoxic molecule? Neurobiol Dis. 8, 743–763. (2001)

    PubMed  Google Scholar 

  6. P. Parchi, R. Castellani, P. Cortelli, P. Montagna, S. G. Chen, R. B. Petersen, V. Manetto, C. L. Vnencak-Jones, M. J. McLean, J. R. Sheller and et al. Regional distribution of protease-resistant prion protein in fatal familial insomnia. Ann Neurol. 38, 21–29. (1995)

    PubMed  Google Scholar 

  7. S. J. DeArmond, W. C. Mobley, D. L. DeMott, R. A. Barry J. H. Beckstead and S. B. Prusiner. Changes in the localization of brain prion proteins during scrapie infection. Neurology. 37, 1271–1280. (1987)

    PubMed  Google Scholar 

  8. J. Collinge, M. S. Palmer, K. C. Sidle, I. Gowland, R. Medori, J. Ironside and P. Lantos. Transmission of fatal familial insomnia to laboratory animals. Lancet. 346, 569–570. (1995)

    PubMed  Google Scholar 

  9. M. Fischer, T. Rulicke, A. Raeber, A. Sailer, M. Moser, B. Oesch, S. Brandner, A. Aguzzi and C. Weissmann. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255–1264. (1996)

    PubMed  Google Scholar 

  10. J. C. Manson, E. Jamieson, H. Baybutt, N. L. Tuzi, R. Barron, I. McConnell, R. Somerville, J. Ironside, R. Will, M. S. Sy, D. W. Melton, J. Hope and C. Bostock. A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J. 18, 6855–6864. (1999)

    PubMed  Google Scholar 

  11. E. Flechsig, D. Shmerling, I. Hegyi, A. J. Raeber, M. Fischer, A. Cozzio, C. von Mering, A. Aguzzi and C. Weissmann. Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron. 27, 399–408. (2000)

    PubMed  Google Scholar 

  12. R. Medori, P. Montagna, H. J. Tritschler, A. LeBlanc, P. Cortelli, P. Tinuper, E. Lugaresi and P. Gambetti. Fatal familial insomnia: a second kindred with mutation of prion protein gene at codon 178. Neurology. 42, 669–670. (1992)

    PubMed  Google Scholar 

  13. P. Brown, C. J. Gibbs, Jr., P. Rodgers-Johnson, D. M. Asher, M. P. Sulima, A. Bacote, L. G. Goldfarb and D. C. Gajdusek. Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol. 35, 513–529. (1994)

    PubMed  Google Scholar 

  14. S. Thellung, V. Villa, A. Corsaro, S. Arena, E. Millo, G. Damonte, U. Benatti, F. Tagliavini, T. Florio and G. Schettini. p38 MAP kinase mediates the cell death induced by PrP106–126 in the SH-SY5Y neuroblastoma cells. Neurobiol Dis. 9, 69–81. (2002)

    PubMed  Google Scholar 

  15. C. Hetz, M. Russelakis-Carneiro, K. Maundrell, J. Castilla and C. Soto. Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J. 22, 5435–5445. (2003)

    PubMed  Google Scholar 

  16. J. Chabry, C. Ratsimanohatra, I. Sponne, P.P. Elena, J.P. Vincent, T. Pillot, B. Drouet, M. Pincon-Raymond, J. Vandekerckhove, M. Rosseneu and J. Chambaz. In vivo and in vitro neurotoxicity of the human prion protein (PrP) fragment P118–135 independently of PrP expression. A nonfibrillar form of the fusogenic prion protein fragment [118–135] induces apoptotic cell death in rat cortical neurons. J Neurosci. 23, 462–469. (2003)

    PubMed  Google Scholar 

  17. M. Daniels, G. M. Cereghetti and D. R. Brown. Toxicity of novel C-terminal prion protein fragments and peptides harbouring disease-related C-terminal mutations. Eur J Biochem. 268, 6155–6164. (2001)

    PubMed  Google Scholar 

  18. W. E. Muller, H. Ushijima, H. C. Schroder, J. M. Forrest, W. F Schatton, P. G. Rytik and M. Heffner-Lauc. Cytoprotective effect of NMDA receptor antagonists on prion protein (PrionSc)-inducedtoxicity in rat cortical cell cultures. Eur J Pharmacol. 246, 261–267. (1993)

    PubMed  Google Scholar 

  19. A. Giese, D. R. Brown, M. H. Groschup, C. Feldmann, I. Haist and H. A. Kretzschmar. Role of microglia in neuronal cell death in prion disease. Brain Pathol. 8, 449–457. (1998)

    PubMed  Google Scholar 

  20. K. Post, D. R. Brown, M. Groschup, H. A. Kretzschmar and D. Riesner. Neurotoxicity but not infectivity of prion proteins can be induced reversibly in vitro. Arch Virol Suppl. 265–273. (2000)

    Google Scholar 

  21. L. De Gioia, C. Selvaggini, E. Ghibaudi, L. Diomede, O. Bugiani, G. Forloni, F. Tagliavini and M. Salmona. Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106–126 of the prion protein. J Biol Chem. 269, 7859–7862. (1994)

    PubMed  Google Scholar 

  22. C. K. Combs, D. E. Johnson, S. B. Cannady, T. M. Lehman and G. E. Landreth. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J Neurosci. 19, 928–939. (1999)

    PubMed  Google Scholar 

  23. F. B. Hafiz and D. R. Brown. A model for the mechanism of astrogliosis in prion disease. Mol Cell Neurosci. 16, 221–232. (2000)

    PubMed  Google Scholar 

  24. T. Florio, D. Paludi, V. Villa, D. R. Principe, A. Corsaro, E. Millo, G. Damonte, C. D’Arrigo, C. Russo, G. Schettini and A. Aceto. Contribution of two conserved glycine residues to fibrillogenesis of the 106–126 prion protein fragment. Evidence thatasoluble variant of the 106–126 peptide isneurotoxic. J Neurochem. 85, 62–72. (2003)

    PubMed  Google Scholar 

  25. F. Tagliavini, F. Prelli, L. Verga, G. Giaccone, R. Sarma, P. Gorevic, B. Ghetti, F. Passerini, E. Ghibaudi, G. Forloni and et al. Synthetic peptides homologous to prion protein residues 106–147 form amyloid-like fibrils in vitro. Proc Natl Acad Sci USA. 90, 9678–9682. (1993)

    PubMed  Google Scholar 

  26. C. Selvaggini, L. De Gioia, L. Cantu, E. Ghibaudi, L. Diomede, F. Passerini, G. Forloni, O. Bugiani, F. Tagliavini and M. Salmona. Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106–126 of the prion protein. Biochem Biophys Res Commun. 194, 1380–1386. (1993)

    PubMed  Google Scholar 

  27. M. Salmona, P. Malesani, L. De Gioia, S. Gorla, M. Bruschi, A. Molinari, F. Della Vedova, B. Pedrotti, M. A. Marrari, T. Awan, O. Bugiani, G. Forloni and F. Tagliavini. Molecular determinants of the physicochemical properties of a critical prion protein region comprising residues 106–126. Biochem J. 342, 207–214. (1999)

    PubMed  Google Scholar 

  28. M. F. Jobling, X. Huang, L. R. Stewart, K. J. Barnham, C. Curtain, I. Volitakis, M. Perugini, A. R. White, R. A. Cherny, C. L. Masters, C. J. Barrow, S. J. Collins, A. I. Bush and R. Cappai. Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106–126. Biochemistry. 40, 8073–8084. (2001)

    PubMed  Google Scholar 

  29. T. Pillot, B. Drouet, M. Pincon-Raymond, J. Vandekerckhove, M. Rosseneu and J. Chambaz. A nonfibrillar form of the fusogenic prion protein fragment [118–135] induces apoptotic cell death in rat cortical neurons. J Neurochem. 75, 2298–2308. (2000)

    PubMed  Google Scholar 

  30. V. Bonetto, T. Massignan, R. Chiesa, M. Morbin, G. Mazzoleni, L. Diomede, N. Angeretti, L. Colombo, G. Forloni, F. Tagliavini and M. Salmona. Synthetic miniprion PrP106. J Biol Chem. 277, 31327–31334. (2002)

    PubMed  Google Scholar 

  31. M. Bucciantini, E. Giannoni, F. Chiti, F. Baroni, L. Formigli, J. Zurdo, N. Taddei, G. Ramponi, C. M. Dobson and M. Stefani. Inherenttoxicity of aggregates impliesa common mechanismfor protein misfolding diseases. Nature. 416, 507–511. (2002)

    PubMed  Google Scholar 

  32. M. Salmona, M. Morbin, T. Massignan, L. Colombo, G. Mazzoleni, R. Capobianco, L. Diomede, F. Thaler, L. Mollica, G. Musco, J. J. Kourie, O. Bugiani, D. Sharma, H. Inouye, D. A. Kirschner, G. Forloni and F. Tagliavini. Structural properties of Gerstmann-Straussler-Scheinker disease amyloid protein. J Biol Chem. 278, 48146–48153. (2003)

    PubMed  Google Scholar 

  33. D. R. Brown, B. Schmidt and H. A. Kretzschmar. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature. 380, 345–347. (1996)

    PubMed  Google Scholar 

  34. D. R. Brown. Prion protein peptide neurotoxicity can be mediated by astrocytes. J Neurochem. 73, 1105–1113. (1999)

    PubMed  Google Scholar 

  35. M. F. Jobling, L. R. Stewart, A. R. White, C. McLean, A. Friedhuber, F. Maher, K. Beyreuther, C. L. Masters, C. J. Barrow, S. J. Collinsand R. Cappai. The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106–126. J Neurochem. 73, 1557–1565. (1999)

    PubMed  Google Scholar 

  36. S. Thellung, T. Florio, V. Villa, A. Corsaro, S. Arena, C. Amico, M. Robello, M. Salmona, G. Forloni, O. Bugiani, F. Tagliavini and G. Schettini. Apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in rat cerebellargranule cells treated with the prion protein fragment 106–126. Neurobiol Dis. 7, 299–309. (2000)

    PubMed  Google Scholar 

  37. S. Thellung, T. Florio, A. Corsaro, S. Arena, M. Merlino, M. Salmona, F. Tagliavini, O. Bugiani, G. Forloni and G. Schettini. Intracellular mechanisms mediating the neuronal death and astrogliosis induced by the prion protein fragment 106–126. Int J Dev Neurosci. 18, 481–492. (2000)

    PubMed  Google Scholar 

  38. L. R. Stewart, A. R. White, M. F. Jobling, B. E. Needham, F. Maher, J. Thyer, K. Beyreuther, C. L. Masters, S. J. Collins and R. Cappai. Involvement of the 5-lipoxygenase pathway in the neurotoxicity of the prion peptide PrP106–126. J Neurosci Res. 65, 565–572. (2001)

    PubMed  Google Scholar 

  39. J. Hope, M. S. Shearman, H. C. Baxter, A. Chong, S. M. Kelly and N. C. Price. Cytotoxicity of prion protein peptide (PrP106–126) differs in mechanism from the ytotoxic activity of the Alzheimer’s disease amyloid peptide, A beta 25–35. Neurodegeneration. 5, 1–11. (1996)

    PubMed  Google Scholar 

  40. T. Florio, S. Thellung, C. Amico, M. Robello, M. Salmona, O. Bugiani, F. Tagliavini, G. Forloni and G. Schettini. Prion protein fragment 106–126 induces apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in the GH3 cell line. J Neurosci Res. 54, 341–352. (1998)

    PubMed  Google Scholar 

  41. D. L. Rymer and T. A. Good. The role of prion peptide structure and aggregation in toxicity and membrane binding. J Neurochem. 75, 2536–2545. (2000)

    PubMed  Google Scholar 

  42. M. Kawahara, Y. Kuroda, N. Arispe and E. Rojas. Alzheimer’s beta-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. J Biol Chem. 275, 14077–14083. (2000)

    PubMed  Google Scholar 

  43. C. N. O’Donovan, D. Tobin and T. G. Cotter. Prion protein fragment PrP-(106–126) induces apoptosis via mitochondrial disruption in human neuronal SH-SY5Y cells. J Biol Chem. 276, 43516–43523. (2001)

    PubMed  Google Scholar 

  44. C. Bate, M. Salmona, L. Diomede and A. Williams. Squalestatin cures prion-infected neurons and protects against prion neurotoxicity. J Biol Chem. 279, 14983–14990. (2004)

    PubMed  Google Scholar 

  45. P. Agostinho and C. R. Oliveira. Involvement of calcineurin in the neurotoxic effects induced by amyloid-betaand prion peptides. Eur J Neurosci. 17, 1189–1196. (2003)

    PubMed  Google Scholar 

  46. A. R. White, R. Guirguis, M. W. Brazier, M. F. Jobling, A. F. Hill, K. Beyreuther, C. J. Barrow, C. L. Masters, S. J. Collins and R. Cappai. Sublethal concentrations of prion peptide PrP106–126 or the amyloid beta peptide of Alzheimer’s disease activates expression of proapoptotic markers in primary cortical neurons. Neurobiol Dis. 8, 299–316. (2001)

    PubMed  Google Scholar 

  47. A. Corsaro, S. Thellung, V. Villa, D. R. Principe, D. Paludi, S. Arena, E. Millo, D. Schettini, G. Damonte, A. Aceto, G. Schettini and T. Florio. Prion protein fragment 106–126 induces a p38 MAP kinase-dependent apoptosis in SH-SY5Y neuroblastoma cells independently from the amyloid fibril formation. Ann N Y Acad Sci. 1010, 610–622. (2003)

    PubMed  Google Scholar 

  48. M. Salmona, G. Forloni, L. Diomede, M. Algeri, L. De Gioia, N. Angeretti, G. Giaccone, F. Tagliavini and O. Bugiani. A neurotoxic and gliotrophic fragment of the prion protein increases plasma membrane microviscosity. Neurobiol Dis. 4, 47–57. (1997)

    PubMed  Google Scholar 

  49. V. Della-Bianca, F. Rossi, U. Armato, I. Dal-Pra, C. Costantini, G. Perini, V. Politi and G. Della Valle. Neurotrophin p75 receptor is involved in neuronal damage by prion peptide-(106–126). J Biol Chem. 276, 38929–38933. (2001)

    PubMed  Google Scholar 

  50. Y. Le, H. Yazawa, W. Gong, Z. Yu, V. J. Ferrans, P. M. Murphy and J. M. Wang. The neurotoxic prion peptide fragment PrP(106–126) is a chemotactic agonist for the G protein-coupled receptor formyl peptide receptor-like 1. J Immunol. 166, 1448–1451. (2001)

    PubMed  Google Scholar 

  51. P. K. Nandi. Interactionof prion peptide HuPrP106–126 with nucleic acid. Arch Virol. 142, 2537–2545. (1997)

    PubMed  Google Scholar 

  52. D. R. Brown, J. Herms and H. A. Kretzschmar. Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport. 5, 2057–2060. (1994)

    PubMed  Google Scholar 

  53. D. R. Brown. Prion protein peptides: optimal toxicity and peptide blockade of toxicity. Mol Cell Neurosci. 15, 66–78. (2000)

    PubMed  Google Scholar 

  54. D. R. Brown. PrPSc-like prion protein peptide inhibits the function of cellular prion protein. Biochem J. 352 Pt 2, 511–518. (2000)

    PubMed  Google Scholar 

  55. J. Chabry, B. Caughey and B. Chesebro. Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J Biol Chem. 273, 13203–13207. (1998)

    PubMed  Google Scholar 

  56. D. R. Brown, B. S. Wong, F. Hafiz, C. Clive, S. J. Haswell and I. M. Jones. Normal prion protein has an activity like that of superoxide dismutase. Biochem J. 344 Pt 1, 1–5.(1999)

    PubMed  Google Scholar 

  57. Y. Gu, H. Fujioka, R. S. Mishra, R. Li and N. Singh. Prion peptide 106–126 modulates the aggregation of cellular prion protein and induces the synthesis of potentially neurotoxic transmembrane PrR. J Biol Chem. 277, 2275–2286. (2002)

    PubMed  Google Scholar 

  58. N. Singh, Y. Gu, S. Bose, S. Kalepu, R. S. Mishra and S. Verghese. Prion peptide 106–126 as a model for prion replication and neurotoxicity. Front Biosci. 7, a60–71. (2002)

    PubMed  Google Scholar 

  59. M. C. Lin, T. Mirzabekov and B. L. Kagan. Channel formation by a neurotoxic prion protein fragment. J Biol Chem. 272, 44–47. (1997)

    PubMed  Google Scholar 

  60. R. Bahadi, P. V. Farrelly, B. L. Kenna, J. I. Kourie, F. Tagliavini, G. Forloni and M. Salmona. Channels formed with a mutant prion protein PrP(82–146) homologous to a 7-kDa fragment in diseased brain of GSS patients. Am J Physiol Cell Physiol. 285, C862–872. (2003)

    PubMed  Google Scholar 

  61. M. Manunta, B. Kunz, E. Sandmeier, P. Christen and H. Schindler. Reported channel formation by prion protein fragment 106–126 in planar lipid bilayers cannot be reproduced. FEBS Lett. 474, 255–256. (2000)

    PubMed  Google Scholar 

  62. G. Forloni, R. Del Bo, N. Angeretti, R. Chiesa, S. Smiroldo, R. Doni, E. Ghibaudi, M. Salmona, M. Porro, L. Verga and et al. A neurotoxic prion protein fragment induces ratastroglial proliferation and hypertrophy. Eur J Neurosci. 6, 1415–1422. (1994)

    PubMed  Google Scholar 

  63. J. M. Peyrin, C. I. Lasmezas, S. Haik, F. Tagliavini, M. Salmona, A. Williams, D. Richie, J. P. Deslys and D. Dormont. Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. Neuroreport. 10, 723–729. (1999)

    PubMed  Google Scholar 

  64. C. Fabrizi, V. Silei, M. Menegazzi, M. Salmona, O. Bugiani, F. Tagliavini, H. Suzuki and G. M. Lauro. The stimulation of inducible nitric-oxide synthase bythe prion proteinfragment 106–126 in human microglia istumor necrosis factor-alpha-dependent and involves p38 mitogen-activated protein kinase. J Biol Chem. 276, 25692–25696 (2001)

    PubMed  Google Scholar 

  65. J. F. Diedrich, P. E. Bendheim, Y. S. Kim, R. I. Carp and A. T. Haase. Scrapie-associated prion protein accumulates in astrocytes during scrapie infection. Proc Natl Acad Sci USA. 88, 375–379. (1991)

    PubMed  Google Scholar 

  66. C. A. Baker, D. Martin and L. Manuelidis. Microgliafrom Creutzfeldt-Jakob disease-infected brains are infectious and show specific mRNA activation profiles. J Virol. 76, 10905–10913. (2002)

    PubMed  Google Scholar 

  67. D. R. Brown. Mayhem of the multiple mechanisms: modelling neurodegeneration in prion disease. J Neurochem. 82, 209–215. (2002)

    PubMed  Google Scholar 

  68. J. Saez-Valero, N. Angeretti and G. Forloni. Caspase-3 activation by beta-amyloid and prion protein peptides is independent from their neurotoxic effect. Neurosci Lett. 293, 207–210. (2000)

    PubMed  Google Scholar 

  69. D. R. Brown, J. W. Herms, B. Schmidtand H. A. Kretzschmar. PrP and beta-amyloid fragments activate different neurotoxic mechanisms in cultured mouse cells. Eur J Neurosci. 9, 1162–1169. (1997)

    PubMed  Google Scholar 

  70. C. Galli, O. Meucci, A. Scorziello, T. M. Werge, P. Calissano and G. Schettini. Apoptosis in cerebellargranule cells is blocked by high KCI, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci. 15, 1172–1179. (1995)

    PubMed  Google Scholar 

  71. S. Korte, N. Vassallo, M. L. Kramer, H. A. Kretzschmarand J. Herms. Modulation of L-type voltage-gated calcium channels by recombinant prion protein. J Neurochem. 87, 1037–1042. (2003)

    PubMed  Google Scholar 

  72. V. Silei, C. Fabrizi, G. Venturini, M. Salmona, O. Bugiani, F. Tagliavini and G. M. Lauro. Activation of microglial cells by PrP and beta-amyloid fragments raises intracellular calcium through L-type voltage sensitive calcium channels. Brain Res. 818, 168–170. (1999)

    PubMed  Google Scholar 

  73. J. W. Herms, A. Madlung, D. R. Brown and H. A. Kretzschmar. Increase of intracellular free Ca2+ in microglia activated by prion protein fragment. Glia. 21, 253–257. (1997)

    PubMed  Google Scholar 

  74. K. Hensley, R. A. Floyd, N. Y. Zheng, R. Nael, K. A. Robinson, X. Nguyen, Q. N. Pye, C. A. Stewart, J. Geddes, W. R. Markesbery, E. Patel, G. V. Johnson and G. Bing. p38 kinase is activated in the Alzheimer’s disease brain. J Neurochem. 72, 2053–2058. (1999)

    PubMed  Google Scholar 

  75. R. A. Lockshin and Z. Zakeri. Caspase-independent cell deaths. Curr Opin Cell Biol. 14, 727–733. (2002)

    PubMed  Google Scholar 

  76. T. Wada and J. M. Penninger. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 23, 2838–2849. (2004)

    PubMed  Google Scholar 

  77. D. R. Brown, W. J. Schulz-Schaeffer, B. Schmidt and H. A. Kretzschmar. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol. 146, 104–112. (1997)

    PubMed  Google Scholar 

  78. A. R. White, S. J. Collins, F. Maher, M. F. Jobling, L. R. Stewart, J. M. Thyer, K. Beyreuther, C. L. Masters and R. Cappai. Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am J Pathol. 155, 1723–1730. (1999)

    PubMed  Google Scholar 

  79. S. Perovic, H. C. Schroder, G. Pergande, H. Ushijima and W. E. Muller. Effect of flupirtine on Bcl-2 and glutathione level in neuronal cells treated in vitro with the prion protein fragment (PrP106–126). Exp Neurol. 147, 518–524. (1997)

    PubMed  Google Scholar 

  80. M. Guentchev, T. Voigtlander, C. Haberler, M. H. Groschup and H. Budka. Evidence for oxidative stress in experimental prion disease. Neurobiol Dis. 7, 270–273. (2000)

    PubMed  Google Scholar 

  81. A. M. Thackray, R. Knight, S. J. Haswell, R. Bujdoso and D. R. Brown. Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem J. 362, 253–258. (2002)

    PubMed  Google Scholar 

  82. S. Turnbull, B. J. Tabner, D. R. Brown and D. Allsop. Copper-dependent generation of hydrogen peroxide from the toxic prion protein fragment PrP106–126. Neurosci Lett. 336, 159–162. (2003)

    PubMed  Google Scholar 

  83. S. Turnbull, B. J. Tabner, D. R. Brownand D. Allsop. Generationof hydrogen peroxide from mutant forms of the prion protein fragment PrP121–231. Biochemistry. 42, 7675–7681. (2003)

    PubMed  Google Scholar 

  84. T. Koster, K. Singh, M. Zimmermann and E. Gruys. Emerging therapeutic agents for transmissible spongiform encephalopathies: a review. J Vet Pharmacol Ther. 26, 315–326. (2003)

    PubMed  Google Scholar 

  85. H. C. Schroder and W. E. Muller. Neuroprotective effect of flupirtine in prion disease. Drugs Today (Barc). 38, 49–58. (2002)

    Google Scholar 

  86. C. Korth, B. C. May, F. E. Cohen and S. B. Prusiner. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci U S A. 98, 9836–9841. (2001)

    PubMed  Google Scholar 

  87. S. Turnbull, B. J. Tabner, D. R. Brown and D. Allsop. Quinacrine acts as an antioxidant and reduces the toxicity of the prion peptide PrP106–126. Neuroreport. 14, 1743–1745. (2003)

    PubMed  Google Scholar 

  88. P. V. Farrelly, B. L. Kenna, K. L. Laohachai, R. Bahadi, M. Salmona, G. Forloni and J. I. Kourie. Quinacrine blocks PrP (106–126)-formed channels. J Neurosci Res. 74, 934–941. (2003)

    PubMed  Google Scholar 

  89. A. Barret, F. Tagliavini, G. Forloni, C. Bate, M. Salmona, L. Colombo, A. De Luigi, L. Limido, S. Suardi, G. Rossi, F. Auvre, K. T. Adjou, N. Sales, A. Williams, C. Lasmezas and J. P. Deslys. Evaluation of quinacrine treatment for prion diseases. J Virol. 77, 8462–8469. (2003)

    PubMed  Google Scholar 

  90. G. Forloni, S. lussich, T. Awan, L. Colombo, N. Angeretti, L. Girola, I. Bertani, G. Poli, M. Caramelli, M. Grazia Bruzzone, L. Farina, L. Limido, G. Rossi, G. Giaccone, J. W. Ironside, O. Bugiani, M. Salmona and F. Tagliavini. Tetracyclines affect prion infectivity. Proc Natl Acad Sci USA. 99, 10849–10854. (2002)

    PubMed  Google Scholar 

  91. F. Tagliavini, G. Forloni, L. Colombo, G. Rossi, L. Girola, B. Canciani, N. Angeretti, L. Giampaolo, E. Peressini, T. Awan, L. De Gioia, E. Ragg, O. Bugiani and M. Salmona. Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro. J Mol Biol. 300, 1309–1322. (2000)

    PubMed  Google Scholar 

  92. I. Sponne, A. Fifre, V. Koziel, B. Kriem, T. Oster, T. Pillot. Humanin rescues cortical neurons from prion-peptide-induced apoptosis. Mol Cell Neurosci. 25, 95–102. (2004)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Florio, T., Thellung, S., Schettini, G. (2005). Molecular Mechanisms Mediating Neuronal Cell Death in Experimental Models of Prion Diseases, in vitro. In: Brown, D.R. (eds) Neurodegeneration and Prion Disease. Springer, Boston, MA. https://doi.org/10.1007/0-387-23923-5_11

Download citation

Publish with us

Policies and ethics