Skip to main content

Hydrogen Sulfide as a Synaptic Modulator

  • Chapter
Dendritic Neurotransmitter Release
  • 649 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Abe, K., and Kimura, H., 1996, The possible role of hydrogen sulfide as an endogenous neuromodulator, J. Neurosci. 16: 1066.

    PubMed  CAS  Google Scholar 

  • Aizenman, E., Lipton, D. A., and Loring, R. H., 1989, Selective modulation of NMDA responses by reduction and oxidation, Neuron 2: 1257.

    Article  PubMed  CAS  Google Scholar 

  • Araque, A., Parpura, V., Sanzgiri, R. P., and Haydon, P. G., 1999, Tripartite synapses: glia, the unacknowledged partner, Trends Neurosci. 22: 208.

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T. V., and Coollingridge, G. L., 1993, A synaptic model of memory: long-term potentiation in the hippocampus, Nature 361: 31.

    Article  PubMed  CAS  Google Scholar 

  • Charles, A. C., Merrill, J. E., Dirksen, E. R., and Sanderson, M. J., 1991, Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate, Neuron 6: 983.

    Article  PubMed  CAS  Google Scholar 

  • Cibulsky, S. M., and Sather, W. A., 1999, Block by ruthenium red of cloned neuronal voltage-gated calcium channels, J. Pharmacol. Exp. Ther. 289: 1447.

    PubMed  CAS  Google Scholar 

  • Clapham, D. E., Runnels, L. W., and Strubing, C., 2001, The TRP ion channel family, Nat. Rev. Neurosci. 2: 387.

    Article  PubMed  CAS  Google Scholar 

  • Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S., and Smith, S. J., 1990, Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science 247: 470.

    Article  PubMed  CAS  Google Scholar 

  • Dallwig, R., and Deitmer, J. W., 2002, Cell-type specific calcium responses in acute rat hippocampal slices. J. Neurosci. Methods 116: 77.

    Article  PubMed  CAS  Google Scholar 

  • Dani, J. W., Chemjavsky, A., and Smith, S. J., 1992, Neuronal activity triggers calcium waves in hippocampal astrocyte networks, Neuron 8: 429.

    Article  PubMed  CAS  Google Scholar 

  • Eberhard, M., and Erne, P., 1991, Calcium binding to fluorescent calcium indicators: calcium green, calcium orange and calcium crimson, Biochem. Biophys. Res. Commun. 180: 209.

    Article  PubMed  CAS  Google Scholar 

  • Fam, S. R., Gallagher, C. J., and Salter, M. W., 2000, P2Y(1) purinoceptor-mediated Ca2+ signaling and Ca2+ wave propagation in dorsal spinal cord astrocytes, J. Neurosci. 20: 2800.

    PubMed  CAS  Google Scholar 

  • Finkbeiner, S., 1992, Calcium waves in astrocytes-filling in the gaps, Neuron 8: 1101.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite, J., Charles, S. L., and Chess-Williams, R., 1988, Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain, Nature 336: 385.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, L. R., Francom, D., Dieken, F. P., Taylor, J. D., Warenycia, M. W., Reiffenstein, R. J., and Dowling, G., 1989, Determination of sulflde in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports, J. Anal. Toxicol. 13: 105.

    PubMed  CAS  Google Scholar 

  • Guthrie, P. B., Knappenberger, J., Segal, M., Bennett, M. V., Charles, A. C., and Kater, S. B., 1999, ATP released from astrocytes mediates glial calcium waves, J. Neurosci. 19: 520.

    PubMed  CAS  Google Scholar 

  • Harris, E. W., Ganong, A. H., and Cotman, C. W., 1984, Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors, Brain Res. 323: 132.

    Article  PubMed  CAS  Google Scholar 

  • Hayley, J. E., Wilcox, G. L., and Chapman, P. F., 1992, The role of nitric oxide in hippocampal long-term potentiation, Neuron 8:211.

    Article  Google Scholar 

  • Kang, J., Jiang, L., Goldman, S. A., and Nedergaard, M, 1998, Astrocyte-mediated potentiation of inhibitory synaptic transmission, Nat. Neurosci. 1: 683.

    Article  PubMed  CAS  Google Scholar 

  • Kim, W. T., Rioult, M. G., and Cornell-Bell, A. H., 1994, Glutamate-induced calcium signaling in astrocytes, Glia 11: 173.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, Y., Tsugane, M., Oka, J.-I., Kimura, H., 2004, Hydrogen sulfide induces calcium waves in astrocytes, FASEB J. 18:557.

    PubMed  CAS  Google Scholar 

  • Nedergaard, M., 1994, Direct signaling from astrocytes to neurons in cultures of mammalian brain cells, Science 263: 1768.

    Article  PubMed  CAS  Google Scholar 

  • O’Dell, J. J., Hawkins, R. D., Kandel, E. R., and Arancio, O., 1991, Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger, PNAS USA 88: 11285.

    Article  PubMed  CAS  Google Scholar 

  • Parpura, V., Basarsky, T. A., Liu, F., Jeftinija, K., Jeftinija, S., and Haydon, P. G., 1994, Glutamate-mediated astrocyte-neuron signaling, Nature 369: 744.

    Article  PubMed  CAS  Google Scholar 

  • Russo, C. D., Tringali, G., Ragazzoni, E., Maggiano, N., Menini, E., Vairano, M., Preziosi, P., and Navarra, P., 2000, Evidence that hydrogen sulphide can modulate hypothalamo-pituitary-adrenal axis function: in vitro and in vivo studies in the rat, J. Neuroendocrinol. 12: 225.

    Article  Google Scholar 

  • Savage, J. C., and Gould, D. H., 1990, Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J. Chromatogr. 526: 540.

    Article  PubMed  CAS  Google Scholar 

  • Schuman, E. M., and Madison, D. V., 1991, A requirement for the intercellular messenger nitric oxide in long-term potentiation, Science 254: 1503.

    Article  PubMed  CAS  Google Scholar 

  • Shan, X., Dunbrack, R. L. J., Christopher, S. A., and Kruger, W. D., 2001, Mutation in the regulatory domain of cystathionine —synthase can functionally suppress patient-derived mutations in cis, Human Mol. Genet. 10: 635.

    Article  CAS  Google Scholar 

  • Stevens, C. F., and Wang, Y., 1993, Reversal of long-term potentiation by inhibitors of haem oxygenase, Nature 364: 147.

    Article  PubMed  CAS  Google Scholar 

  • Strubing, C., Krapivinsky, G., Krapivinsky, L., and Clapham, D. E., 2001, TRPC1 and TRPC5 form a novel cation channel in mammalian brain, Neuron 29: 645.

    Article  PubMed  CAS  Google Scholar 

  • Tang, L-H., Aizenman, E., 1993, The modulation of N-methyl-D-aspartate receptors by redox and alkylating reagents in rat cortical neurons in vitro, J. Physiol. 465: 303.

    PubMed  CAS  Google Scholar 

  • Tardy, M., Fages, C., Riol, H., LePrince, G., Rataboul, P., Charriere-bertrand, C., and Nunez, J., 1989, Developmental expression of the glial fibrillary acidic protein mRNA in the central nervous system and in cultured astrocytes, J. Neurochem. 52: 162.

    Article  PubMed  CAS  Google Scholar 

  • Toohey, J. I., 1989, Sulphane sulphur in biological systems: a possible regulatory role, Biochem. J. 264: 625.

    PubMed  CAS  Google Scholar 

  • van Rossum, D. B., Patterson, R. L., Ma, H. T., and Gill, D. L, 2000, Ca2+ entry mediated by store depletion, S-nitrosylation, and TRP3 channels. Comparison of coupling and function, J. Biol. Chem. 275: 28562.

    Article  PubMed  Google Scholar 

  • Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V., and Snyder, S. H., 1993, Carbon monoxide: a putative neural messenger, Science 259: 381.

    Article  PubMed  CAS  Google Scholar 

  • Warenycia, M. W., Goodwin, L. R., Benishin, C. G., Reiffenstein, R. J., Francom, D. M., Taylor, J. D., and Dieken, F. P., 1989, Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels, Biochem. Pharmacol. 38: 973.

    Article  PubMed  CAS  Google Scholar 

  • Zhuo, M., Small, S. A., Kandel, E. R., and Hawkins, R. D., 1993, Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus, Science 260: 1946.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Kimura, H. (2005). Hydrogen Sulfide as a Synaptic Modulator. In: Ludwig, M. (eds) Dendritic Neurotransmitter Release. Springer, Boston, MA. https://doi.org/10.1007/0-387-23696-1_21

Download citation

Publish with us

Policies and ethics