Skip to main content

Strategies of Protection of Normal Cells During Chemo- and Radio-Therapy Based on Modulation of Cell Cycle and Apoptotic Pathways

  • Chapter
Apoptotic Pathways as Targets for Novel Therapies in Cancer and Other Diseases

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12. References

  • Albanell J, Rojo F, Averbuch S, et al., (2002). Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol, 20:110–24.

    PubMed  CAS  Google Scholar 

  • Adjei AA & Rowinsky EK. (2003). Novel anticancer agents in clinical development. Cancer Biol Ther, 2:S5–15.

    PubMed  CAS  Google Scholar 

  • Aoki M, Blazek E & Vogt PK. (2001). A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc Natl Acad Sci USA, 98:136–41.

    PubMed  CAS  Google Scholar 

  • Bacus SS, Altomare DA, Lyass, L, et al., (2002). AKT2 is frequently upregulated in HER-2/neu-positive, breast cancers and may contribute to tumor aggressiveness by enhancing cell survival. Oncogene, 21:3532–40.

    PubMed  CAS  Google Scholar 

  • Baldwin RL, Tran H & Karlan BY. (2003). Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling. Cancer Res, 63:1413–19.

    PubMed  CAS  Google Scholar 

  • Ballif BA & Blenis J. (2001). Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ, 12:397–408.

    PubMed  CAS  Google Scholar 

  • Barboule N, Chadebech P, Baldin V, et al., (1997). Involvement of p21 in mitotic exit after paclitaxel treatment in MCF-7 breast adenocarcinoma cell lines. Oncogene, 15:2867–75.

    PubMed  CAS  Google Scholar 

  • Bartek J, Lukas J & Bartkova J. (1999). Perspective: defects in cell cycle control and cancer. J Pathol, 187:95–9.

    PubMed  CAS  Google Scholar 

  • Baselga J. (2002a). Targeting the epidermal growth factor receptor with tyrosine kinase inhibitors: small molecules, big hopes. J Clin Oncol, 20:2217–19.

    PubMed  Google Scholar 

  • Baselga J. (2002b). Targeting the epidermal growth factor receptor with tyrosine kinase inhibitors: small molecules, big hopes. J Clin Oncol, 20:2217–19.

    PubMed  Google Scholar 

  • Baserga R. (1994). Oncogenes and the strategy of growth factors. Cell, 79:927–30.

    PubMed  CAS  Google Scholar 

  • Bible KC & Kaufmann SH. (1997). Cytotoxic synergy between flavopiridol (NSC 64890, L86-8275) and various antineoplastic agents: the importance of sequence of administration. Cancer Res, 57:3375–80.

    PubMed  CAS  Google Scholar 

  • Bishop PC, Myers T, Robey R, et al., (2002). Differential sensitivity of cancer cells to inhibitors of the epidermal growth factor receptor family. Oncogene, 21:119–27.

    PubMed  CAS  Google Scholar 

  • Bissonnette N & Hunting DJ. (1998). p21-induced cycle arrest in G1 protects cells from apoptosis induced by UV-irradiation or RNA polymerase II blockage. Oncogene, 16:3461–9.

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV. (1998). The mitogen-activated protein kinase pathway mediates growth arrest or E1A-dependent apoptosis in SKBr3 human breast cancer cells. Int J Cancer, 78:511–17.

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV. (2004). Antiangiogenic therapy and tumor progression. Cancer Cell, 5:13–17.

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV, Bishop PC, Robey R, et al., (2000a). Loss of cell cycle control allows selective microtubule-active drug-induced Bcl-2 phosphorylation and cytotoxicity in autonomous cancer cells. Cancer Res, 60:3425–8.

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV, Chuman Y, Bergan RC & Fojo T. (1999). Mitogen-activated protein kinase pathway is dispensable for microtubule-active drug-induced Raf-1/Bcl-2 phosphorylation and apoptosis in leukemia cells. Leukemia, 13:1028–36.

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV, Darzynkiewicz Z & Figg WD. (2002a). Flavopiridol Inversely Affects p21WAFl/CIPl and p53 and Protects p21-Sensitive Cells from Paclitaxel. Cancer Biol Ther, 1:420–5.

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV, Demidenko ZN & Fojo T. (2002b). Inhibition of transcription results in accumulation of Wt p53 followed by delayed outburst of p53-inducible proteins: p53 as a sensor of transcriptional integrity. Cell Cycle, 1:67–74.

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV, Dixon SC, Robey R & Figg WD. (2001). Resistance to growth inhibitory and apoptotic effects of phorbol ester and UCN-01 in aggressive cancer cell lines. Int J Oncol, 18:697–704.

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV & Pardee AB. (2002). The restriction point of the cell cycle. Cell Cycle, 1:103–10.

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV, Robey R, Bates S & Fojo T. (2000b). Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs. J Clin Invest, 105:533–9.

    PubMed  CAS  Google Scholar 

  • Bonni A, Brunet A, West AE, et al., (1999). Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science, 286:1358–62.

    PubMed  CAS  Google Scholar 

  • Booth D, Haley JD, Bruskin AM & Potten CS. (2000). Transforming growth factor-B3 protects murine small intestinal crypt stem cells and animal survival after irradiation, possibly by reducing stem-cell cycling. Int J Cancer, 86:53–9.

    PubMed  CAS  Google Scholar 

  • Brandes LJ, LaBella FS & Warrington RC. (1991). Increased therapeutic index of antineoplastic drugs in combination with intracellular histamine antagonists. J Natl Cancer Inst 83:1329–36.

    PubMed  CAS  Google Scholar 

  • Brognard J, Clark AS, Ni Y & Dennis PA. (2001). Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res, 61:3986–97.

    PubMed  CAS  Google Scholar 

  • Browder T, Butterfield CE, Kraling BM, et al., (2000). Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60:1878–86.

    PubMed  CAS  Google Scholar 

  • Bruno S, Ardelt B, Skierski JS, et al., (1992). Different effects of staurosporine, an inhibitor of protein kinases, on the cell cycle and chromatin structure of normal and leukemic lymphocytes. Cancer Res, 52:470–3.

    PubMed  CAS  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, et al., (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 282:1497–1501.

    PubMed  CAS  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, et al., (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104:263–9.

    PubMed  CAS  Google Scholar 

  • Busse D, Doughty RS, Ramsey TT, et al., (2000). Reversible G1 arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27KIPl independent of MAPK activity. J Biol Chem 275:6987–95.

    PubMed  CAS  Google Scholar 

  • Cardone MH, Roy N, Stennicke HR, et al., (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–21.

    PubMed  CAS  Google Scholar 

  • Chen G, Baechle A, Nevins TD, et al., (1998). Protection against cyclophosphamide-induced alopecia and inhibition of mammary tumor growth by topical 1,25-dihydroxyvitamin D3 in mice. Int J Cancer, 75:303–9.

    PubMed  CAS  Google Scholar 

  • Chen X, Lowe M, Herliczek T, et al., (2000). Protection of normal proliferating cells against chemotherapy by staurosporine-mediated, selective, and reversible G(l) Arrest. J Natl Cancer Inst, 92:1999–2008.

    PubMed  CAS  Google Scholar 

  • Chen X, Lowe M & Keyomarsi K. (1999). UCN-01-mediated G1 arrest in normal but not tumor breast cells is pRb-dependent and p53-independent. Oncogene, 18:5691–702.

    CAS  Google Scholar 

  • Cohn DE & Herzog TJ. (2000). Gestational trophoblastic diseases: new standards for therapy. Curr Opin Oncol, 12:492–6.

    PubMed  CAS  Google Scholar 

  • Cui W, Fowlis DJ, Bryson S, et al., (1996). TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell, 86:531–42.

    PubMed  CAS  Google Scholar 

  • Daley GQ. (2003). Gleevec resistance: lessons for target-directed drug development. Cell Cycle, 2:190–1.

    PubMed  CAS  Google Scholar 

  • Dancey J & Sausville EA. (2003). Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov, 2:296–313.

    PubMed  CAS  Google Scholar 

  • Darzynkiewicz Z. (1995). Apoptosis in antitumor strategies: modulation of cell-cycle or differentiation. J Cell Biochem, 58:151–9.

    PubMed  CAS  Google Scholar 

  • Dent P, Jarvis WD, Birrer MJ, et al., (1998). The roles of signaling by the p42/p44 mitogen-activated protein (MAP) kinase pathway; a potential route to radio-and chemo-sensitization of tumor cells resulting in the induction of apoptosis and loss of clonogenicity. Leukemia, 12:1843–50.

    PubMed  CAS  Google Scholar 

  • Deptala A, Li X, Bedner E, et al., (1999). Differences in induction of p53, p21WAFl and apoptosis in relation to cell cycle phase of MCF-7 cells treated with camptothecin. IntJ Oncol, 15:861–71.

    CAS  Google Scholar 

  • Dixon H & Norbury CJ. (2002). Therapeutic exploitation of checkpoint defects in cancer cells lacking p53 function. Cell Cycle, 1:362–8.

    PubMed  CAS  Google Scholar 

  • Druker BJ. (2002). Perspectives on the development of a molecularly targeted agent. Cancer Cell, 1:31–6.

    PubMed  CAS  Google Scholar 

  • Druker BJ & Lydon NB. (2000). Lessons learned from the development of an Abl tyrosine inhibitor for chronic myelogenous leukemia. J Clin Invest, 105:3–7.

    PubMed  CAS  Google Scholar 

  • Du L, Smolewski P, Bedner E, et al., (2001). Selective protection of mitogenically stimulated human lymphocytes but not leukemic cells from cytosine arabinoside-induced apoptosis by LY294002, a phosphoinositol-3 kinase inhibitor. IntJ Oncol, 19:811–19.

    CAS  Google Scholar 

  • Dudley DT, Pang SJ, Decker AJ, et al., (1995). A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA, 92:7686–9.

    PubMed  CAS  Google Scholar 

  • Erhardt P, Schremser EJ & Cooper GM. (1999). B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol, 19:5308–15.

    PubMed  CAS  Google Scholar 

  • Evan G & Littlewood T. (1998). A matter of life and cell death. Science 281:1317–22.

    PubMed  CAS  Google Scholar 

  • Folkman J. (1971). Tumor angiogenesis: therapeutic implications. N Eng J Med, 285:1182–6.

    CAS  Google Scholar 

  • Frei E. (1985). Curative cancer chemotherapy. Cancer Res, 45:6523–37.

    PubMed  Google Scholar 

  • Fukazawa H & Uehara Y. (2000). U0126 reverses Ki-ras-mediated transformation by blocking both mitogen-activated protein kinase and p70 S6 kinase pathways. Cancer Res, 60:2104–17.

    PubMed  CAS  Google Scholar 

  • Gartler SM. (1977). Patterns of cellular proliferation in normal and tumor cell populations. Am J Pathol, 86:685–92.

    PubMed  CAS  Google Scholar 

  • Greider BW, Kallman RF & Franko AJ. (1983). Recruitment of noncycling tumor cells into proliferation by isoproterenol. Cancer Res, 43:1501–03.

    PubMed  CAS  Google Scholar 

  • Grem JL, Nguyen D, Monahan BP, et al., (1999). Sequence-dependent antagonism between fluorouracil and paclitaxel in human breast cancer cells. Biochem Pharmacol, 58:477–486.

    PubMed  CAS  Google Scholar 

  • Grzegorzewski K, Ruscetti FW. Usui N, et al., (1994). Recombinant transforming growth factor beta 1 and beta 2 protect mice from acutely lethal doses of 5-fluorouracil and doxorubicin. J Exp Med, 180:1047–57.

    PubMed  CAS  Google Scholar 

  • Guba M, von Breitenbuch P, Steinbauer M, et al., (2002). Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med, 8:128–35.

    PubMed  CAS  Google Scholar 

  • Halicka HD, Seiter K, Feldman EJ, et al., (1997). Cell cycle specificity of apoptosis during treatment of leukaemias. Apoptosis, 2:25–39.

    PubMed  CAS  Google Scholar 

  • Harada H, Andersen JS, Mann M, et al., (2001). p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci USA, 98:9666–70.

    PubMed  CAS  Google Scholar 

  • Hartwell LH & Kastan MB. (1994). Cell cycle control and cancer. Science, 266:1821–8.

    PubMed  CAS  Google Scholar 

  • Hanahan D & Folkman J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86:353–64.

    PubMed  CAS  Google Scholar 

  • Harris AL. (2002). Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer, 2:38–47.

    PubMed  CAS  Google Scholar 

  • Hidalgo M & Rowinsky EK. (2000). The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene, 19:6680–6.

    PubMed  CAS  Google Scholar 

  • Holm C, Covey JM, Kerrigan D & Pommier Y. (1989). Differential requirement of DNA replication for the cytotoxicity of DNA topoisomerase I and II inhibitors in Chinese hamster DC3F cells. Cancer Res, 49:6365–8.

    PubMed  CAS  Google Scholar 

  • Hsiang YH, Lihou MG & Liu LF. (1989). Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res, 49:5077–82.

    PubMed  CAS  Google Scholar 

  • Huang S, Liu LN, Hosoi H, et al., (2001). p53/p21(CIPl) cooperate in enforcing rapamycin-induced G(l) arrest and determine the cellular response to rapamycin. Cancer Res, 61:3373–81.

    PubMed  CAS  Google Scholar 

  • Huang X, Traganos F & Darzynkiewicz Z. (2003). DNA damage induced by DNA topoisomerase I-and topoisomerase II-inhibitors detected by histone H2AX phosphorylation in relation to the cell cycle phase and apoptosis. Cell Cycle, 2:614–19.

    PubMed  CAS  Google Scholar 

  • Jakobisiak M, Bruno S, Skierski JS & Darzynkiewicz Z. (1991). Cell cycle-specific effects of lovastatin. Proc Natl Acad Sci USA, 88:3628–32.

    PubMed  CAS  Google Scholar 

  • Juan G, Gong J, Traganos F & Darzynkiewicz Z. (1996). Unscheduled expression of cyclins D1 and D3 in human tumour cell lines. Cell Prolif, 9:259–66.

    Google Scholar 

  • Kantarjian H, Talpaz M, O’Brien S, et al., (2004). High-dose Imatinib Mesylate Therapy in Newly Diagnosed Philadelphia Chromosome-Positive Chronic Phase Chronic Myeloid Leukemia. Blood, 103:2873–8.

    PubMed  CAS  Google Scholar 

  • Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, et al., (1997). Suppression of c-myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature, 385:544–8.

    PubMed  CAS  Google Scholar 

  • Kerbel R & Folkman J. (2002). Clinical translation of angiogenesis inhibitors. Nat Rev Cancer, 2:727–39.

    PubMed  CAS  Google Scholar 

  • Kerbel RS. (1997). A cancer therapy resistant to resistance. Nature, 390:335–6.

    PubMed  CAS  Google Scholar 

  • Keyomarsi K & Herliczek TW. (1997). The role of cyclin E in cell proliferation, development and cancer. Prog Cell Cycle Res, 3:171–91.

    PubMed  CAS  Google Scholar 

  • Keyomarsi K & Pardee AB. (1993). Redundant cyclin overexpression and gene amplification in breast-cancer cells. Proc Natl Acad Sci USA, 90:1112–16.

    PubMed  CAS  Google Scholar 

  • Kim JS, Pirnia F, Choi YH, et al., (2000). Lovastatin induces apoptosis in a primitive neuroectodermal tumor cell line in association with RB down-regulation and loss of the G1 checkpoint. Oncogene, 19:6082–90.

    PubMed  CAS  Google Scholar 

  • Klausner RD. (2002). The fabric of cancer cell biology-Weaving together the strands. Cancer Cell, 1:3–10.

    PubMed  CAS  Google Scholar 

  • Kruger EA, Blagosklonny MV, Dixon SC & Figg WD. (1998–99). UCN-01, a protein kinase C inhibitor, inhibits endothelial cell proliferation and angiogenic hypoxic response. Invasion Metastasis, 18:209–18.

    PubMed  CAS  Google Scholar 

  • Li, X, Traganos F & Darzynkiewicz Z. (1994). Simultaneous analysis of DNA replication and apoptosis during treatment of HL-60 cells with camptothecin and hyperthermia and mitogen stimulation of human lymphocytes. Cancer Res, 54:4289–93.

    PubMed  CAS  Google Scholar 

  • Liggett WHJ & Sidransky D. (1998). Role of the p16 tumor suppressor gene in cancer. J Clin Oncol, 16:1197–206.

    PubMed  CAS  Google Scholar 

  • Mack PC, Gandara DR, Bowen C, et al., (1999). RB status as a determinant of response to UCN-01 in non-small cell lung carcinoma. Clin Cancer Res, 5:2596–604.

    PubMed  CAS  Google Scholar 

  • MacKeigan JP, Collins TS & Ting JP-Y. (2000). MEK inhibition enhances paclitaxel-induced tumor apoptosis. J Biol Chem, 275:38953–6.

    PubMed  CAS  Google Scholar 

  • MacKeigan JP, Taxman DJ, Hunter D, et al., (2002). inactivation of the antiapoptotic phosphatidylinositol 3-kinase-Akt pathway by the combined treatment of Taxol and mitogen-activated kinase kinase inhibition. Clin Cancer Res, 8:2091–9.

    PubMed  CAS  Google Scholar 

  • Markowitz S, Wang J, Myeroff L, et al., (1995). Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science, 268:1336–8.

    PubMed  CAS  Google Scholar 

  • Martin SJ & Green DR. (1994). Apoptosis as a goal of cancer therapy. Curr Opin Oncol, 6:616–21.

    PubMed  CAS  Google Scholar 

  • Massague J, Blain SW & Lo RS. (2000). TGFβ signaling in growth control, cancer, and heritable disorders. Cell, 103:295–309.

    PubMed  CAS  Google Scholar 

  • McCormack ES, Borzillo GV, Ambrosino C, et al., (1997). Transforming growth factor-beta3 protection of epithelial cells from cycle-selective chemotherapy in vitro. Biochem Pharmacol, 53:1149–59.

    PubMed  CAS  Google Scholar 

  • Melillo G. (2004) HIF-1: A Target for Cancer, Ischemia and Inflammation-Too Good to Be True? Cell Cycle, 3:154–5.

    PubMed  CAS  Google Scholar 

  • Metcalfe SM, Canman CE, Milner J, et al., (1997). Rapamycin and p53 act on different pathways to induce G1 arrest in mammalian cells. Oncogene, 15:1635–42.

    PubMed  CAS  Google Scholar 

  • Neshat MS, Mellinghoff IK, Tran C, et al., (2001). Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA, 98:10314–19.

    PubMed  CAS  Google Scholar 

  • Nevins JR. (2001). The Rb/E2F pathway and cancer. Hum Mol Genet, 10:699–703.

    PubMed  CAS  Google Scholar 

  • Ng SSW, Tsao MS, Chow S & Hedley DW. (2000). Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res, 60:5451–5.

    PubMed  CAS  Google Scholar 

  • Nurse P. (2000). A long twentieth century of the cell cycle and beyond. Cell, 100:71–8.

    PubMed  CAS  Google Scholar 

  • Pardee AB. (1974). A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci USA, 71:1286–90.

    PubMed  CAS  Google Scholar 

  • Pardee AB & James LJ. (1975). Selective killing of transformed baby hamster kidney (BHK) cells. Proc Natl Acad Sci USA, 72:4994–8.

    PubMed  CAS  Google Scholar 

  • Podsypanina K, Lee RT, Politis C, et al., (2001). An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc Natl Acad Sci USA, 98:10320–5.

    PubMed  CAS  Google Scholar 

  • Potten CS, Booth D & Haley JD. (1997). Pretreatment with transforming growth factor beta-3 protects small intestinal stem cells against radiation damage in vivo. Br J Cancer, 75:1454–9.

    PubMed  CAS  Google Scholar 

  • Potter C & Harris AL. (2004). Hypoxia Inducible Carbonic Anhydrase IX, Marker of Tumour Hypoxia, Survival Pathway and Therapy Target. Cell Cycle, 3:164–7.

    PubMed  CAS  Google Scholar 

  • Powers JF, Tischler AS & Cherington V. (1999). Discordant effects of rapamycin on proliferation and p70S6 kinase phosphorylation in normal and neoplastic rat chromaffin cells. Neurosci Lett, 259:137–40.

    PubMed  CAS  Google Scholar 

  • Ranson M, Hammond LA, Ferry D, et al., (2002). ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol, 20:2240–50.

    PubMed  CAS  Google Scholar 

  • Redkar AA, Meadows GG & Daoud SS. (2001). UCN-01 dose-dependent inhibition of normal hyperproliferative cells in mice. Int J Oncol, 19:193–9.

    PubMed  CAS  Google Scholar 

  • Rohn JL, Hueber AO, McCarthy NJ, et al., (1998). The opposing roles of the Akt and c-Myc signaling pathways in survival from CD95-mediated apoptosis. Oncogene, 17:2811–28.

    PubMed  CAS  Google Scholar 

  • Rowinsky EK. (2003). Signal events: Cell signal transduction and its inhibition in cancer. Oncologist, 8:S5–17.

    Google Scholar 

  • Sellers WR & Fisher DE. (1999). Apoptosis and cancer drug targeting. J Clin Invest, 104:1655–61.

    PubMed  CAS  Google Scholar 

  • Semba S, Itoh N, Ito M, et al., (2002). The in Vitro and in Vivo Effects of 2-(4-Morpholinyl)-8-phenylchromone (LY294002), a Specific Inhibitor of Phosphatidylinositol 3′-Kinase, in Human Colon Cancer Cells. Clin Cancer Res, 8:1957–63.

    PubMed  CAS  Google Scholar 

  • Shah MA & Schwartz GK. (2001). Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res, 7:2168–81.

    PubMed  CAS  Google Scholar 

  • Sherr CJ. (1999). Cancer Cell Cycles. Science, 274:1672–7.

    Google Scholar 

  • Sherr CJ. (2000). The Pezcoller lecture: Cancer Cell Cycle Revisited. Cancer Res, 60:3689–95.

    PubMed  CAS  Google Scholar 

  • Sherr CJ. (2002). D1 in G2. Cell Cycle, 1:36–8.

    PubMed  CAS  Google Scholar 

  • Siegel PM & Massague J. (2003). Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer, 3:807–20.

    PubMed  CAS  Google Scholar 

  • Slapak CA, Fine RL & Richman CM. (1985). Differential protection of normal and malignant human myeloid progenitors (CFU-GM) from Ara-C toxicity using cycloheximide. Blood, 66:830–4.

    PubMed  CAS  Google Scholar 

  • Sonis ST, Lindquist L, Van Vugt A, et al., (1994). Prevention of chemotherapy-induced ulcerative mucositis by transforming growth factor beta 3. Cancer Res, 54:1135–8.

    PubMed  CAS  Google Scholar 

  • Squires MS, Nixon PM & Cook SJ. (2002). Cell cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK)1/2 but not ERK5/BMK1. Biochem J, 366:673–80.

    PubMed  CAS  Google Scholar 

  • Steinberg D. (2002). Closing in on multiple cancer targets. Scientist, 16:29–31.

    Google Scholar 

  • Stewart ZA, Mays D & Pietenpol JA. (1999). Defective G1-S cell cycle checkpoint function sensitizes cells to microtubule inhibitor-induced apoptosis. Cancer Res, 59:3831–7.

    PubMed  CAS  Google Scholar 

  • Stolfi RL, Sawyer RC & Martin DS. (1987). Failure of L-histidinol to improve the therapeutic efficiency of 5-fluorouracil against murine breast tumors. Cancer Res, 47:16–20.

    PubMed  CAS  Google Scholar 

  • Tan AR & Swain SM. (2003). Ongoing adjuvant trials with trastuzumab in breast cancer. Semin Oncol, 30:S54–64.

    Google Scholar 

  • Tang B, Vu M, Booker T, et al., (2003). TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest, 112:1116–24.

    PubMed  CAS  Google Scholar 

  • Tenzer A, Zingg D, Rocha S, et al., (2001). The Phosphatidylinositide 3′-Kinase/Akt Survival Pathway Is a Target for the Anticancer and Radiosensitizing Agent PKC412, an Inhibitor of Protein Kinase C. Cancer Res, 61:8203–10.

    PubMed  CAS  Google Scholar 

  • Traganos F, Ardelt B, Halko N, et al., (1992). Effects of genistein on the growth and cell cycle progression of normal human lymphocytes and human leukemic MOLT-4 and HL-60 cells. Cancer Res, 52:6200–08.

    PubMed  CAS  Google Scholar 

  • Twombly R. (2002). Despite Concerns, FDA Panel Backs EGFR Inhibitor. J Natl Cancer Inst, 94:1596–7.

    PubMed  Google Scholar 

  • Van’t Land B, Meijer HP, Frerichs J, et al., (2002). Transforming Growth Factor-beta2 protects the small intestine during methotrexate treatment in rats possibly by reducing stem cell cycling. Br J Cancer, 87:113–18.

    Google Scholar 

  • Wang JL, Wang X, Wang H, et al., (2002). CHK1-regulated S-phase checkpoint response reduces campthothecin cytotoxicity. Cell Cycle, 1:267–72.

    PubMed  CAS  Google Scholar 

  • Wang S, Vrana JA, Bartimole TM, et al., (1997). Agents that down-regulate or inhibit protein kinase C circumvent resistance to 1-beta-D-arabinofuranosylcytosine-induced apoptosis in human leukemia cells that overexpress Bcl-2. Mol Pharmacol, 52:1000–09.

    PubMed  CAS  Google Scholar 

  • Warnock S. (2002). Trastuzumab and vinorelbine: gentle, effective combo. News of Hem/One, 11.

    Google Scholar 

  • Warrington RC & Fang WD. (1985). Histidinol-mediated enhancement of the specificity of two anticancer drugs in mice bearing leukemic bone marrow disease. J Natl Cancer Inst, 74:1071–7.

    PubMed  CAS  Google Scholar 

  • Warrington RC & Fang WD. (1989). L-histidinol improves the selectivity and efficacy of alkylating agents and daunomycin in mice with P388 leukaemia. Br J Cancer, 60:652–6.

    PubMed  CAS  Google Scholar 

  • Warrington RC, Muzyka TG & Fang WD. (1984). Histidinol-mediated improvement in the specificity of 1-beta-D-arabinofuranosylcytosine and 5-fluorouracil in L 1210 leukemia-bearing mice. Cancer Res 44:2929–35.

    PubMed  CAS  Google Scholar 

  • Weyman CM & Stacey DW. (1996). Transient blockage of proliferative signalling: a novel strategy for protective chemotherapy. Anticancer Res, 16:493–8.

    PubMed  CAS  Google Scholar 

  • Wilkinson E. (2002). Surprise phase III failure for ZD1839. Surprise phase III failure for ZD1839. Lancet Oncol, 3:583.

    PubMed  Google Scholar 

  • Wingate H, Bedrosian I, Akli S & Keyomarsi K. (2003). The low molecular weight (LMW) isoforms of cyclin E deregulate the cell cycle of mammary epithelial cells. Cell Cycle, 2:461–6.

    PubMed  CAS  Google Scholar 

  • Woynarowska BA & Woynarowski JM. (2002). Preferential targeting of apoptosis in tumor versus normal cells. Biochim Biophys Acta, 1587:309–17.

    PubMed  CAS  Google Scholar 

  • Wymenga AN, van der Graaf WT, Hofstra LS, et al., (1999). Phase I study of transforming growth factor-beta3 mouthwashes for prevention of chemotherapy-induced mucositis. Clin Cancer Res, 5:1363–8.

    PubMed  CAS  Google Scholar 

  • Yu DH & Hung MC. (2000). Role of erbB2 in breast cancer chemosensitivity. BioEssays, 22:673–80.

    PubMed  CAS  Google Scholar 

  • Yu DH, Jing T, Liu BL, et al., (1998). Overexpression of ErbB2 blocks taxol-induced apoptosis by upregulation of p21(Cip), which inhibits p34(Cdc2) kinase. Mol Cell, 2:581–91.

    PubMed  CAS  Google Scholar 

  • Yu Y & Sato JD. (1999). MAP kinases, phosphatidylinositol 3-kinase, and p70 S6 kinase mediate the mitogenic response of human endothelial cells to vascular endothelial growth factor. J Cell Physiol, 178:235–46.

    PubMed  CAS  Google Scholar 

  • Zhu XF, Liu ZC, Xie BF, et al., (2001). EGFR tyrosine kinase inhibitor AG1478 inhibits cell proliferation and arrests cell cycle in nasopharyngeal carcinoma cells. Cancer Lett, 169:27–32.

    PubMed  CAS  Google Scholar 

  • Zhong H, Chiles K, Feldser D, et al., (2000). Modulation of hypoxia-inducible factor 1 alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res, 60:1541–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Blagosklonny, M.V., Darzynkiewicz, Z. (2005). Strategies of Protection of Normal Cells During Chemo- and Radio-Therapy Based on Modulation of Cell Cycle and Apoptotic Pathways. In: Los, M., Gibson, S.B. (eds) Apoptotic Pathways as Targets for Novel Therapies in Cancer and Other Diseases. Springer, Boston, MA. https://doi.org/10.1007/0-387-23695-3_17

Download citation

Publish with us

Policies and ethics