Skip to main content

The Neuroendocrine Loop Model Revisited: Is It Valid or Even Relevant?

  • Chapter
  • 3066 Accesses

Abstract

Biological rhythms and the biological clocks that control them are fundamental properties of most living organisms, ranging from several forms of bacteria to multicellular plants and animals. These properties share many formal and biochemical properties, and affect all aspects of physiological function, ranging from control of transcription to metabolism to cell cycle to behavior. Because these rhythms are expressed similarly in single-celled and multi-cellular organisms, and because clock function pervades all levels of biological organization, many authors have suggested that biological clocks are properties of all cells.1

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.S. Pittendrigh CS. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol. 55:16–54. (1993)

    Article  PubMed  CAS  Google Scholar 

  2. S. Gaston and M. Menaker. Pineal function: the biological clock in the sparrow? Science 160(832):1125–7 (1968)

    Article  PubMed  CAS  Google Scholar 

  3. E. Gwinner. Effects of pinealectomy on circadian locomotor activity rhythms in European starlings, Sturnus vulgaris. J Comp Physiol 126: 123–129 (1978)

    Article  Google Scholar 

  4. Ebihara, S. and Kawamura, H. The role of the pineal organ and the suprachiasmatic nucleus in the control of circadian locomotor rhythms in the Java sparrow (Padda oryzivova). J Comp Physiol A 141:207–214. (1981).

    Article  Google Scholar 

  5. Fuchs, J.L. Effects of Pinealectomy and subsequent melatonin implants on activity rhythms in the house finch (Carpodacus mexicanus). J. Comp. Physiol. [A] 153:413–19 (1983)

    Article  Google Scholar 

  6. Zimmerman NH, Menaker M. The pineal gland: a pacemaker within the circadian system of the house sparrow. Proc Natl Acad Sci U S A. 76(2):999–1003. (1979)

    Article  PubMed  CAS  Google Scholar 

  7. Binkley S. A timekeeping enzyme in the pineal gland. Sci Am. 240(4):66–71. (1979)

    Article  PubMed  CAS  Google Scholar 

  8. Kasal CA, Menaker M, Perez-Polo JR. Circadian clock in culture: N-acetyltransferase activity of chick pineal glands oscillates in vitro. Science. 203(4381):656–8. (1979)

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi JS, Hamm H, Menaker M. Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro. Proc Natl Acad Sci U S A.;77(4):2319–22. (1980)

    Article  PubMed  CAS  Google Scholar 

  10. Wainwright SD, Wainwright LK. Chick pineal serotonin acetyltransferase: a diurnal cycle maintained in vitro and its regulation by light. Can J Biochem. 57(6):700–9 (1979)

    Article  PubMed  CAS  Google Scholar 

  11. V.M. Cassone, D.S. Brooks, D.B. Hodges, T.A. Kelm, J. Lu, W.S. Warren Integration of circadian and visual function in mammals and birds: brain imaging and the role of melatonin in biological clock regulation. In: Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions. F. Gonzalez-Lima, T. Finkenstaedt and H. Scheich (eds) Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 299–318. (1992)

    Google Scholar 

  12. J. Lu and V.M. Cassone. Daily melatonin administration synchronizes circadian patterns of brain metabolism and behavior in pinealectomized house sparrows, Passer domesticus. J. Comp. Physiol. A 173: 775–782 (1993)

    Article  Google Scholar 

  13. S Heigl and E. Gwinner. Synchronization of circadian rhythms of house sparrows by oral melatonin: effects of changing period. J Biol Rhythms. 10(3): 225–33. (1995)

    Article  PubMed  CAS  Google Scholar 

  14. E. Gwinner and I. Benzinger. Synchronization of a circadian rhytm in pinealectomized European starlings, Sturnus vulgaris. J. Comp. Physiol [A]w, 127: 209–213 (1978)

    Article  CAS  Google Scholar 

  15. C.C. Chabot, M. Menaker. Effects of physiological cycles of infused melatonin on circadian rhythmicity in pigeons. J Comp Physiol [A]. 170(5):615–22 (1992)

    CAS  Google Scholar 

  16. Ebihara S, Uchiyama K, and Oshima I Circadian organization in the pigeon Columbia livia: the role of the pineal organ and the eye. J Comp Physiol A 154:59–69 (1984)

    Article  Google Scholar 

  17. Underwood H, Siopes T. Circadian organization in Japanese quail. J Exp Zool. 232(3):557–66 (1984).

    Article  PubMed  CAS  Google Scholar 

  18. Cassone VM, Natesan AK. Time and time again: the phylogeny of melatonin as a transducer of biological time. J Biol Rhythms. 12(6):489–97 (1997)

    Article  PubMed  CAS  Google Scholar 

  19. Klein DC, Coon SL, Roseboom PH, Weller JL, Bernard M, Gastel JA, Zatz M, Iuvone PM, Rodriguez IR, Begay V, Falcon J, Cahill GM, Cassone VM, Baler R. The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res.;52:307–57; (1997)

    PubMed  CAS  Google Scholar 

  20. R.Y. Moore, R. Silver. Suprachiasmatic nucleus organization. Chronobiol Int. 15(5):475–87 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. J.D. Miller, L.P. Morin, W.J. Schwartz, R.Y. Moore. New insights into the mammalian circadian clock. Sleep. 19(8):641–67. (1996)

    PubMed  CAS  Google Scholar 

  22. Moore RY, Lenn NJ. A retinohypothalamic projection in the rat. J Comp Neurol.;146(1):1–14. (1972)

    Article  PubMed  CAS  Google Scholar 

  23. Hendrickson AE, Wagoner N, Cowan WM. An autoradiographic and electron microscopic study of retino-hypothalamic connections. Z Zellforsch Mikrosk Anat.;135(1):1–26 (1972).

    Article  PubMed  CAS  Google Scholar 

  24. Cassone VM, Speh JC, Card JP, Moore RY. Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus. J Biol Rhythms.;3(1):71–91 (1988)

    Article  PubMed  CAS  Google Scholar 

  25. Botchkina GI, Morin LP. Ontogeny of radial glia, astrocytes and vasoactive intestinal peptide immunoreactive neurons in hamster suprachiasmatic nucleus. Brain Res Dev Brain Res. 86(1–2):48–56 (1995)

    Article  PubMed  CAS  Google Scholar 

  26. Lavialle M, Serviere J. Circadian fluctuations in GFAP distribution in the Syrian hamster suprachiasmatic nucleus. Neuroreport. 4(11):1243–6 (1993)

    Article  PubMed  CAS  Google Scholar 

  27. Weaver DR, Namboodiri MA, Reppert SM. Iodinated melatonin mimics melatonin action and reveals discrete binding sites in fetal brain. FEBS Lett. 228(1):123–7. (1988)

    Article  PubMed  CAS  Google Scholar 

  28. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42(1):201–6.(1972)

    Article  PubMed  CAS  Google Scholar 

  29. Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A. 69(6):1583–6 (1972)

    Article  PubMed  CAS  Google Scholar 

  30. Warren WS, Champney TH, Cassone VM. The suprachiasmatic nucleus controls the circadian rhythm of heart rate via the sympathetic nervous system. Physiol Behav. 55(6):1091–9 (1994)

    Article  PubMed  CAS  Google Scholar 

  31. Sawaki Y, Nihonmatsu I, Kawamura H. Transplantation of the neonatal suprachiasmatic nuclei into rats with complete bilateral suprachiasmatic lesions. Neurosci Res.;1(1):67–72 (1984).

    Article  PubMed  CAS  Google Scholar 

  32. Ralph MR, Lehman MN. Transplantation: a new tool in the analysis of the mammalian hypothalamic circadian pacemaker. Trends Neurosci. 14(8):362–6 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. Earnest DJ, Liang FQ, Ratcliff M, Cassone VM. Immortal time: circadian clock properties of rat suprachiasmatic cell lines. Science. 283(5402):693–5 (1999)

    Article  PubMed  CAS  Google Scholar 

  34. Green DJ, Gillette R. Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res;245(1):198–200.(1982)

    Article  PubMed  CAS  Google Scholar 

  35. Shibata S, Oomura Y, Kita H, Hattori K. Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res.;247(1):154–8.(1982)

    Article  PubMed  CAS  Google Scholar 

  36. Earnest DJ, Sladek CD. Circadian vasopressin release from perifused rat suprachiasmatic explants in vitro: effects of acute stimulation. Brain Res. 422(2):398–402.(1987)

    Article  PubMed  CAS  Google Scholar 

  37. Newman GC, Hospod FE, Patlak CS, Moore RY. Analysis of in vitro glucose utilization in a circadian pacemaker model. J Neurosci.;12(6):2015–21.(1992)

    PubMed  CAS  Google Scholar 

  38. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A.;101(15):5339–46.(2004)

    Article  PubMed  CAS  Google Scholar 

  39. Brandstatter R, Abraham U. Hypothalamic circadian organization in birds. I. Anatomy, functional morphology, and terminology of the suprachiasmatic region. Chronobiol Int. 20(4):637–55.(2003)

    Article  PubMed  Google Scholar 

  40. Van Tienhoven A, Juhasz LP. The chicken telencephalon, diencephalon and mesencephalon in sterotaxic coordinates. J Comp Neurol 118:185–97(1962)

    Article  Google Scholar 

  41. Cassone VM, Moore RY. Retinohypothalamic projection and suprachiasmatic nucleus of the house sparrow, Passer domesticus. J Comp Neurol. 266(2):171–82 (1987)

    Article  PubMed  CAS  Google Scholar 

  42. Abraham U, Albrecht U, Gwinner E, Brandstatter R. Spatial and temporal variation of passer Per2 gene expression in two distinct cell groups of the suprachiasmatic hypothalamus in the house sparrow (Passer domesticus). Eur J Neurosci 16(3): 429–36 (2002)

    Article  PubMed  Google Scholar 

  43. Yasuo S, Yoshimura T, Bartell PA, Iigo M, Makino E, Okabayashi N, Ebihara S. Effect of melatonin administration on qPer2, qPer3, and qClock gene expression in the suprachiasmatic nucleus of Japanese quail. Eur J Neurosci. 16(8):1541–6. (2002)

    Article  PubMed  Google Scholar 

  44. Yasuo S, Watanabe M, Okabayashi N, Ebihara S, Yoshimura T. Circadian clock genes and photoperiodism: Comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese Quail under various light schedules. Endocrinology.;144(9):3742–8 (2003)

    Article  PubMed  Google Scholar 

  45. Takahashi JS, Menaker M. Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. J Neurosci. 2(6):815–28 (1982)

    PubMed  CAS  Google Scholar 

  46. Cassone VM. Circadian variation of [14C]2-deoxyglucose uptake within the suprachiasmatic nucleus of the house sparrow, Passer domesticus. Brain Res459(1):178–82. (1988)

    Article  PubMed  CAS  Google Scholar 

  47. Lu, J. and V.M. Cassone Pineal regulation of circadian rhythms of 2-deoxy[14C]-glucose uptake and 2[125I]iodomelatonin binding in the visual system of the house sparrow, Passer domesticus. J. Comp. Physiol. A 173: 765–774 (1993)

    Article  Google Scholar 

  48. Cantwell EL, Cassone VM Daily and circadian fluctuation in 2-deoxy[(14)C]-glucose uptake in circadian and visual system structures of the chick brain: effects of exogenous melatonin. Brain Res Bull;57(5):603–11 (2002)

    Article  PubMed  CAS  Google Scholar 

  49. Juss, T.V.S., Davis, I.R., Follett, B.K. and Mason, R.: Circadian rhythm in neuronal discharge activity in the quail lateral hypothalamic retinorecipient nucleus (LHRN) recording in vitro, J. Physiol. 475:132 (1994)

    Google Scholar 

  50. Rivkees SA, Cassone VM, Weaver DR, Reppert SM. Melatonin receptors in chick brain: characterization and localization. Endocrinology. 4: (1989)

    Google Scholar 

  51. Cassone VM, Brooks DS, Kelm TA. Comparative distribution of 2[125I]iodomelatonin binding in the brains of diurnal birds: outgroup analysis with turtles. Brain Behav Evol. 45(5):241–56 (1995)

    Article  PubMed  CAS  Google Scholar 

  52. Reppert SM, Weaver DR, Cassone VM, Godson C, Kolakowski LF Jr. Melatonin receptors are for the birds: molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron 15(5):1003–15 (1995)

    Article  PubMed  CAS  Google Scholar 

  53. Zatz M. Light and norepinephrine similarly prevent damping of the melatonin rhythm in cultured chick pineal cells: regulation of coupling between the pacemaker and overt rhythms? J Biol Rhythms. 6(2):137–47 (1991)

    Article  PubMed  CAS  Google Scholar 

  54. Cassone VM, Menaker M. Sympathetic regulation of chicken pineal rhythms. Brain Res. 272(2):311–7 (1983)

    Article  PubMed  CAS  Google Scholar 

  55. Cassone VM, Takahashi JS, Blaha CD, Lane RF, Menaker M. Dynamics of noradrenergic circadian input to the chicken pineal gland. Brain Res. 384(2):334–41 (1986)

    Article  PubMed  CAS  Google Scholar 

  56. Cassone VM, Forsyth AM, Woodlee GL. Hypothalamic regulation of circadian noradrenergic input to the chick pineal gland. J Comp Physiol [A]. 167(2):187–92 (1990)

    CAS  Google Scholar 

  57. Cassone VM, Menaker M. Is the avian circadian system a neuroendocrine loop? J Exp Zool. 232(3):539–49 (1984).

    Article  PubMed  CAS  Google Scholar 

  58. Cassone, V.M., and J. Lu The pineal gland and avian circadian organization: the neuroendocrine loop. Adv. Pineal Res. 8: 31–40(1994)

    CAS  Google Scholar 

  59. Silver R, LeSauter J, Tresco PA, Lehman MN. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature. 382(6594):810–3. (1996)

    Article  PubMed  CAS  Google Scholar 

  60. Allen G, Rappe J, Earnest DJ, Cassone VM. Oscillating on borrowed time: diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts. J Neurosci. 21(20):7937–43 (2001).

    PubMed  CAS  Google Scholar 

  61. Cassone VM. Melatonin: time in a bottle. Oxf Rev Reprod Biol;12:319–67 (1990).

    PubMed  CAS  Google Scholar 

  62. Armstrong SM. Melatonin as a chronobiotic for circadian insomnia. Clinical observations and animal models. Adv Exp Med Biol. 460:283–97 (1999)

    Article  PubMed  CAS  Google Scholar 

  63. Pevet P. Melatonin: from seasonal to circadian signal. J Neuroendocrinol.;15(4):422–6 (2003)

    Article  PubMed  CAS  Google Scholar 

  64. Redman J, Armstrong S, Ng KT. Free-running activity rhythms in the rat: entrainment by melatonin. Science. 219(4588):1089–91 (1983)

    Article  PubMed  CAS  Google Scholar 

  65. Cassone VM, Chesworth MJ, Armstrong SM. Dose-dependent entrainment of rat circadian rhythms by daily injection of melatonin. J Biol Rhythms. 1(3):219–29 (1986)

    Article  PubMed  CAS  Google Scholar 

  66. Pitrosky B, Kirsch R, Malan A, Mocaer E, Pevet P. Organization of rat circadian rhythms during daily infusion of melatonin or S20098, a melatonin agonist. Am J Physiol. 277(3 Pt 2):R812–28 (1999)

    PubMed  CAS  Google Scholar 

  67. Schuhler S, Pitrosky B, Kirsch R, Pevet P. Entrainment of locomotor activity rhythm in pinealectomized adult Syrian hamsters by daily melatonin infusion. Behav Brain Res. 133(2):343–50 (2002)

    Article  PubMed  CAS  Google Scholar 

  68. Lewy AJ, Bauer VK, Hasler BP, Kendall AR, Pires ML, Sack RL. Capturing the circadian rhythms of free-running blind people with 0.5 mg melatonin. Brain Res. 918(1–2):96–100 (2001)

    Article  PubMed  CAS  Google Scholar 

  69. Cassone VM, Chesworth MJ, Armstrong SM. Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiol Behav. 36(6):1111–21 (1986).

    Article  PubMed  CAS  Google Scholar 

  70. Chesworth MJ, Cassone VM, Armstrong SM. Effects of daily melatonin injections on activity rhythms of rats in constant light. Am J Physiol.;253(1 Pt 2):R101–7, (1987)

    PubMed  CAS  Google Scholar 

  71. Warren WS, Hodges DB, Cassone VM. Pinealectomized rats entrain and phase-shift to melatonin injections in a dose-dependent manner. J Biol Rhythms. 8(3):233–45, (1993).

    Article  PubMed  CAS  Google Scholar 

  72. Dubocovich ML, Rivera-Bermudez MA, Gerdin MJ, Masana MI. Molecular pharmacology, regulation and function of Mammalian melatonin receptors. Front Biosci., 8:D1093–108, (2003).

    Article  PubMed  CAS  Google Scholar 

  73. Reppert SM, Weaver DR, Godson C. Melatonin receptors step into the light: cloning and classification of subtypes. Trends Pharmacol Sci. 17(3):100–2, (1996).

    Article  PubMed  CAS  Google Scholar 

  74. Cassone VM, Roberts MH, Moore RY. Effects of melatonin on 2-deoxy-[1-14C]glucose uptake within rat suprachiasmatic nucleus. Am J Physiol.;255(2 Pt 2):R332–7 (1988).

    PubMed  CAS  Google Scholar 

  75. Shibata S, Cassone VM, Moore RY. Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus in vitro. Neurosci Lett.;97(1–2):140–4, (1989).

    Article  PubMed  CAS  Google Scholar 

  76. Gillette MU, McArthur AJ. Circadian actions of melatonin at the suprachiasmatic nucleus. Behav Brain Res. 73(1–2):135–9 (1996)

    PubMed  CAS  Google Scholar 

  77. Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, Weaver DR. Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol. 23(3):1054–60 (2003).

    Article  PubMed  CAS  Google Scholar 

  78. Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 19(1):91–102 (1997).

    Article  PubMed  CAS  Google Scholar 

  79. Glossop NR, Hardin PE. Central and peripheral circadian oscillator mechanisms in flies and mammals. J Cell Sci. 115 (Pt 17):3369–77 (2002).

    PubMed  CAS  Google Scholar 

  80. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 418(6901):935–41 (2002).

    Article  PubMed  CAS  Google Scholar 

  81. Yoshimura T, Yasuo S, Suzuki Y, Makino E, Yokota Y, Ebihara S. Identification of the suprachiasmatic nucleus in birds. Am J Physiol Regul Integr Comp Physiol. 280(4): R1185–9 (2001).

    PubMed  CAS  Google Scholar 

  82. Bailey MJ, Chong NW, Xiong J, Cassone VM. Chickens’ Cry2: molecular analysis of an avian cryptochrome in retinal and pineal photoreceptors. FEBS Lett. 513(2–3):169–74 (2002).

    Article  PubMed  CAS  Google Scholar 

  83. Abraham U, Albrecht U, Brandstatter R. Hypothalamic circadian organization in birds. II. Clock gene expression. Chronobiol Int. 20(4): 657–69 (2003).

    Article  PubMed  CAS  Google Scholar 

  84. Yasuo S, Yoshimura T, Bartell PA, Iigo M, Makino E, Okabayashi N, Ebihara S. Effect of melatonin administration on qPer2, qPer3, and qClock gene expression in the suprachiasmatic nucleus of Japanese quail. Eur J Neurosci 16(8):1541–6 (2002).

    Article  PubMed  Google Scholar 

  85. Bailey MJ, Beremand PD, Hammer R, Bell-Pedersen D, Thomas TL, Cassone VM. Transcriptional profiling of the chick pineal gland, a photoreceptive circadian oscillator and pacemaker. Mol Endocrinol. 17, 2084–95, (2003)

    Article  PubMed  CAS  Google Scholar 

  86. Bailey MJ, Beremand PD, Hammer R, Reidel E, Thomas TL, Cassone V. Transcriptional profiling of circadian patterns of mRNA expression in the chick retina. J. Biol Chem in press

    Google Scholar 

  87. Brandstatter R, Abraham U. Hypothalamic circadian organization in birds. I. Anatomy, functional morphology, and terminology of the suprachiasmatic region. Chronobiol Int. 20(4):637–55 (2003).

    Article  PubMed  Google Scholar 

  88. Poirel VJ, Boggio V, Dardente H, Pevet P, Masson-Pevet M, Gauer F. Contrary to other non-photic cues, acute melatonin injection does not induce immediate changes of clock gene mRNA expression in the rat suprachiasmatic nuclei. Neuroscience. 120(3):745–55 (2003).

    Article  PubMed  CAS  Google Scholar 

  89. Golden SS, Canales SR. Cyanobacterial circadian clocks—timing is everything. Nat Rev Microbiol. 1(3):191–9 (2003).

    Article  PubMed  CAS  Google Scholar 

  90. Roenneberg T, Colfax GN, Hastings JW. A circadian rhythm of population behavior in Gonyaulax polyedra. J Biol Rhythms.;4(2):201–16. (1999)

    Google Scholar 

  91. Correa A, Lewis ZA, Greene AV, March IJ, Gomer RH, Bell-Pedersen D. Multiple oscillators regulate circadian gene expression in Neurospora. Proc Natl Acad Sci U S A. 100(23):13597–602 (2003).

    Article  PubMed  CAS  Google Scholar 

  92. Allen, G., Y. Farnell, D. Bell-Pedersen, V.M. Cassone, and D.J. Earnest Effects of altered clock gene expression on the pacemaker properties of SCN2.2 cells and oscillatory properties of NIH/3T3 cells. Neuroscience 127: 989–999 (2004)

    Article  PubMed  CAS  Google Scholar 

  93. Wiesinger H, Hamprecht B, Dringen R. Metabolic pathways for glucose in astrocytes. Glia.;21(1):22–34 (1997).

    Article  PubMed  CAS  Google Scholar 

  94. Magistretti PJ. Cellular bases of functional brain imaging: insights from neuronglia metabolic coupling. Brain Res. 886(1–2):108–112 (2000).

    Article  PubMed  CAS  Google Scholar 

  95. Benington JH, Heller HC. Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol. 45(4):347–60 (1995).

    Article  PubMed  CAS  Google Scholar 

  96. Adachi A, Natesan AK, Whitfield-Rucker MG, Weigum SE, Cassone VM. Functional melatonin receptors and metabolic coupling in cultured chick astrocytes. Glia. 39(3):268–78 (2002).

    Article  PubMed  Google Scholar 

  97. Peters J., Bailey, MJ, Cassone, VM (2003) Differential regulation of clock genes and metabolic activity in astrocytes. Neurosci Abs. 16: 6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Cassone, V.M. (2006). The Neuroendocrine Loop Model Revisited: Is It Valid or Even Relevant?. In: Cardinali, D.P., Pandi-Perumal, S.R. (eds) Neuroendocrine Correlates of Sleep/Wakefulness. Springer, Boston, MA. https://doi.org/10.1007/0-387-23692-9_3

Download citation

Publish with us

Policies and ethics