Skip to main content

The Development and Regulation of Expressed Rhythmicity in Infants

  • Chapter
Neuroendocrine Correlates of Sleep/Wakefulness
  • 3050 Accesses

Abstract

Circadian rhythms are endogenously generated rhythms with a period length of about 24-hrs. Evidence gathered over the past decade indicates that the circadian timing system develops prenatally and the suprachiasmatic nuclei, the site of a circadian clock, is present by mid-gestation in primates. Recent evidence also shows that the circadian system of primate infants is responsive to light at very premature stages and that low intensity lighting can regulate the developing clock. After birth, there is progressive maturation of the circadian system outputs, with pronounced rhythms in sleep-wake and hormone secretion generally developing after two months of age. Showing the importance of photic regulation of circadian phase in infants, exposure of premature infants to low-intensity cycled lighting results in the early establishment of rest-activity patterns that are in phase with the 24-hour light-dark cycle. With the continued elucidation of circadian system development and influences on human physiology and illness, it is anticipated that consideration of circadian biology will become an increasingly important component of neonatal care

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Panda, J. B. Hogenesch, S. A. Kay. Circadian rhythms from flies to human. Nature. 16;417(6886):329–335.(2002).

    Article  PubMed  CAS  Google Scholar 

  2. M. C. Moore-Ede, C. A. Czeisler, G. S. Richardson. Circadian timekeeping in health and disease. Part 1. Basic properties of circadian pacemakers. N. Engl. J. Med.; 309(8):469–476.(1983).

    Article  PubMed  CAS  Google Scholar 

  3. M. C. Moore-Ede, C. A. Czeisler, G. S. Richardson. Circadian timekeeping in health and disease. Part 2. Clinical implications of circadian rhythmicity. N. Engl. J. Med.; 309(9):530–536.(1983).

    Article  PubMed  CAS  Google Scholar 

  4. D. R. Weaver. The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms. 13(2):100–112.(1998).

    Article  PubMed  CAS  Google Scholar 

  5. D. K. Welsh, D. E. Logothetis, M. Meister, S.M. Reppert. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 14(4):697–706.(1995).

    Article  PubMed  CAS  Google Scholar 

  6. C. Liu, D. R. Weaver, S. H. Strogatz, S. M. Reppert. Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell. 91(6):855–860.(1997).

    Article  PubMed  CAS  Google Scholar 

  7. L. P. Morin. The circadian visual system. Brain Res.Brain Res.Rev.; 19(1): 102–127.(1994).

    Article  PubMed  CAS  Google Scholar 

  8. J. M. Kornhauser, K. E. Mayo, J. S. Takahashi. Light, immediate-early genes, and circadian rhythms. Behav Genet. 26(3):221–240.(1996).

    Article  PubMed  CAS  Google Scholar 

  9. A. G. Watts, L. W. Swanson, G. Sanchez-Watts. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J.Comp.Neurol.; 258(2):204–229.(1987).

    Article  PubMed  CAS  Google Scholar 

  10. A. G. Watts, L. W. Swanson. Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J.Comp.Neurol.; 258(2): 230–252.(1987).

    Article  PubMed  CAS  Google Scholar 

  11. R. Y. Moore. Organization of the primate circadian system. J.Biol.Rhythms. 8Suppl:S3–9:S3–9.(1993).

    PubMed  Google Scholar 

  12. R. Lydic, W. C. Schoene, C. A. Czeisler, M. C. Moore-Ede. Suprachiasmatic region of the human hypothalamus: homolog to the primate circadian pacemaker? Sleep.; 2(3):355–361.(1980).

    PubMed  CAS  Google Scholar 

  13. R. Lydic, H. E. Albers, B. Tepper, M. C. Moore-Ede. Three-dimensional structure of the mammalian suprachiasmatic nuclei: a comparative study of five species. J.Comp.Neurol.;204(3):225–237.(1982).

    Article  PubMed  CAS  Google Scholar 

  14. K. Lushington, R. Galka, L. N. Sassi, D. J. Kennaway, D. Dawson. Extraocular light exposure does not phase shift saliva melatonin rhythms in sleeping subjects. J Biol Rhythms.;17(4):377–386.(2002).

    Article  PubMed  CAS  Google Scholar 

  15. W. J. Schwartz, S. M. Reppert, S. M. Eagan, M. C. Moore-Ede. In vivo metabolic activity of the suprachiasmatic nuclei: a comparative study. Brain Res.; 274(1):184–187.(1983).

    Article  PubMed  CAS  Google Scholar 

  16. S. A. Rivkees, P. L. Hofman, J. Fortman. Newborn primate infants are entrained by low intensity lighting. Proc.Natl.Acad.Sci.U.S.A.;94(1):292–297.(1997).

    Article  PubMed  CAS  Google Scholar 

  17. S. M. Reppert, M. J. Perlow, L. G. Ungerleider, et al. Effects of damage to the suprachiasmatic area of the anterior hypothalamus on the daily melatonin and cortisol rhythms in the rhesus monkey. J Neurosci. 1(12):1414–1425.(1981).

    PubMed  CAS  Google Scholar 

  18. D. M. Edgar, W. C. Dement, C. A. Fuller. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci. 13(3):1065–1079.(1993).

    PubMed  CAS  Google Scholar 

  19. W. J. Schwartz, N. A. Busis, E. T. Hedley-Whyte. A discrete lesion of ventral hypothalamus and optic chiasm that disturbed the daily temperature rhythm. J.Neurol.; 233(1):1–4.(1986).

    Article  PubMed  CAS  Google Scholar 

  20. S. Rivkees. Arrhythmicity in a child with septo-optic dysplasia and establishment of sleep-wake cyclicity with melatonin. J Pediatrics. 139:463–465.(2001)

    Article  CAS  Google Scholar 

  21. D. I. Friedman, J. K. Johnson, R. L. Chorsky, E. G. Stopa. Labeling of human retinohypothalamic tract with the carbocyanine dye, DiI. Brain Res.; 560(1–2): 297–302.(1991).

    Article  PubMed  CAS  Google Scholar 

  22. A. A. Sadun, J. D. Schaechter, L. E. Smith. A retinohypothalamic pathway in man: light mediation of circadian rhythms. Brain Res.;302(2):371–377.(1984).

    Article  PubMed  CAS  Google Scholar 

  23. S. S. Campbell, P. J. Murphy. Extraocular circadian phototransduction in humans. Science. 279(5349):396–399.(1998).

    Article  PubMed  CAS  Google Scholar 

  24. M. Hebert, S. K. Martin, C. I. Eastman. Nocturnal melatonin secretion is not suppressed by light exposure behind the knee in humans. Neurosci Lett. 22;274(2):127–130.(1999).

    Article  PubMed  CAS  Google Scholar 

  25. R. G. Foster. Shedding light on the biological clock. Neuron. 20(5):829–832.(1998).

    Article  PubMed  CAS  Google Scholar 

  26. G. Jean-Louis, D. F. Kripke, R. J. Cole, J. A. Elliot. No melatonin suppression by illumination of popliteal fossae or eyelids. J Biol Rhythms. 15(3):265–269. (2000).

    Article  PubMed  CAS  Google Scholar 

  27. E. D. Weitzman, C. A. Czeisler, J. C. Zimmerman, M. C. Moore-Ede. Biological rhythms in man: relationship of sleep-wake, cortisol, growth hormone, and temperature during temporal isolation. Adv Biochem Psychopharmacol. 28:475–499. (1981).

    PubMed  CAS  Google Scholar 

  28. C. A. Czeisler, E. B. Klerman. Circadian and sleep-dependent regulation of hormone release in humans. Recent Prog Horm Res. 54:97–130.(1999).

    PubMed  CAS  Google Scholar 

  29. S. M. Reppert, D. R. Weaver, S. A. Rivkees. Maternal communication of circadian phase to the developing mammal. Psychoneuroendocrinology.;13(1–2):63–78. (1988).

    Article  PubMed  CAS  Google Scholar 

  30. S. M. Reppert. Interaction between the circadian clocks of mother and fetus. Ciba.Found.Symp.; 183:198–207(1995).

    PubMed  CAS  Google Scholar 

  31. F. J. Van Eerdenburg, P. Rakic. Early neurogenesis in the anterior hypothalamus of the rhesus monkey. Brain Res.Dev.Brain Res.;79(2):290–296.(1994).

    Article  PubMed  Google Scholar 

  32. L. Nowell-Morris, C. E. Faherenbruch. Practical and evolutionary considerations for the use of nonhuman primate model in prenatal research. New York: Alan R. Liss;1985.

    Google Scholar 

  33. S. M. Reppert, D. R. Weaver, S. A. Rivkees, E. G. Stopa. Putative melatonin receptors in a human biological clock. Science. 242(4875):78–81.(1988).

    Article  PubMed  CAS  Google Scholar 

  34. S. A. Rivkees, J. E. Lachowicz. Functional D1 and D5 dopamine receptors are expressed in the suprachiasmatic, supraoptic, and paraventricular nuclei of primates. Synapse. 26(1):1–10.(1997).

    Article  PubMed  CAS  Google Scholar 

  35. S. M. Reppert, W. J. Schwartz. Functional activity of the suprachiasmatic nuclei in the fetal primate. Neurosci.Lett.;46(2):145–149.(1984).

    Article  PubMed  CAS  Google Scholar 

  36. A. Jolly. Hour of birth in primates and man. Folia Primatol. 18(1):108–121.(1972).

    Article  PubMed  CAS  Google Scholar 

  37. D. F. Swaab. Development of the human hypothalamus. Neurochem Res. 20(5):509–519.(1995).

    Article  PubMed  CAS  Google Scholar 

  38. S. F. Glotzbach, P. Sollars, M. Pagano. Development of the human retinohypothalamic tract. Soc. Neurosci.;18:857.(1992).

    Google Scholar 

  39. S. A. Rivkees, H. Hao. Developing circadian rhythmicity. Semin Perinatol. 24(4):232–242.(2000).

    Article  PubMed  CAS  Google Scholar 

  40. D. B. Boivin, J. F. Duffy, R. E. Kronauer, C. A. Czeisler. Dose-response relationships for resetting of human circadian clock by light. Nature. 379(6565): 540–542.(1996).

    Article  PubMed  CAS  Google Scholar 

  41. T. L. Shanahan, C. A. Czeisler. Physiological effects of light on the human circadian pacemaker. Semin Perinatol. 24(4):299–320.(2000).

    Article  PubMed  CAS  Google Scholar 

  42. H. Hao, S. A. Rivkees. The biological clock of very premature primate infants is responsive to light. Proc Natl Acad Sci U S A. 96(5):2426–2429.(1999).

    Article  PubMed  CAS  Google Scholar 

  43. M. Seron-Ferre, C. A. Ducsay, G. J. Valenzuela. Circadian rhythms during pregnancy. Endocr.Rev.;14(5):594–609.(1993).

    PubMed  CAS  Google Scholar 

  44. M. Seron-Ferre, C. Torres-Farfan, M. L. Forcelledo, G. J. Valenzuela. The development of circadian rhythms in the fetus and neonate. Semin Perinatol. 25(6):363–370.(2001).

    Article  PubMed  CAS  Google Scholar 

  45. A. H. Parmelee, Jr. Sleep cycles in infants. Dev.Med.Child Neurol.;11(6): 794–795.(1969).

    Article  PubMed  Google Scholar 

  46. A. Meier-Koll, U. Hall, U. Hellwig, G. Kott, V. Meier-Koll. A biological oscillator system and the development of sleep-waking behavior during early infancy. Chronobiologia. 5(4):425–440.(1978).

    PubMed  CAS  Google Scholar 

  47. J. Kleitman, Engelman. Sleep characteristics of infants. J Appl Physiolol. 6: 127–134.(1953).

    Google Scholar 

  48. D. J. Kennaway, G. E. Stamp, F. C. Goble. Development of melatonin production in infants and the impact of prematurity. J.Clin.Endocrinol.Metab.;75(2): 367–369.(1992).

    Article  PubMed  CAS  Google Scholar 

  49. D. J. Kennaway, F. C. Goble, G. E. Stamp. Factors influencing the development of melatonin rhythmicity in humans. J.Clin.Endocrinol.Metab.;81(4):1525–1532. (1996).

    Article  PubMed  CAS  Google Scholar 

  50. I. Z. Beitins, A. Kowarski, C. J. Migeon, G. G. Graham. Adrenal function in normal infants and in marasmus and kwashiorkor. Cortisol secretion, diurnal variation of plasma cortisol, and urinary excretion of 17-hydroxycorticoids, free corticoids, and cortisol. J Pediatr. 86(2):302–308.(1975).

    Article  PubMed  CAS  Google Scholar 

  51. S. Onishi, G. Miyazawa, Y. Nishimura, et al. Postnatal development of circadian rhythm in serum cortisol levels in children. Pediatrics. 72(3):399–404.(1983).

    PubMed  CAS  Google Scholar 

  52. D. A. Price, G. C. Close, B. A. Fielding. Age of appearance of circadian rhythm in salivary cortisol values in infancy. Arch.Dis.Child. 58(6):454–456.(1983).

    Article  PubMed  CAS  Google Scholar 

  53. T. Hellbrugge, J. E. Lange, J. Rutenfranz. Circadian periodicity of physiological functions in different stages of infancy and childhood. Ann NY Acad Sci. 117:361–373.(1964).

    Article  Google Scholar 

  54. A. H. Parmelee, Jr., W. H. Wenner, Y. Akiyama, M. Schultz, E. Stern. Sleep states in premature infants. Dev.Med.Child Neurol.;9(1):70–77.(1967).

    Article  PubMed  Google Scholar 

  55. S. A. Rivkees. Developing circadian rhythmicity. Basic and clinical aspects. Pediatr.Clin.North Am.;44(2):467–487.(1997).

    Article  PubMed  CAS  Google Scholar 

  56. S. W. D’souza, S. Tenreiro, D. Minors, M. L. Chiswick, D. G. Sims, J. Waterhouse. Skin temperature and heart rate rhythms in infants of extreme prematurity. Arch.Dis.Child. 67(7 Spec No):784–788.(1992).

    Article  PubMed  Google Scholar 

  57. T. F. Anders, M. A. Keener, H. Kraemer. Sleep-wake state organization, neonatal assessment and development in premature infants during the first year of life. II. Sleep.;8(3):193–206.(1985).

    PubMed  CAS  Google Scholar 

  58. S. F. Glotzbach, D. M. Edgar, M. Boeddiker, R. L. Ariagno. Biological rhythmicity in normal infants during the first 3 months of life. Pediatrics. 94(4 Pt 1): 482–488.(1994).

    PubMed  CAS  Google Scholar 

  59. S. F. Glotzbach, D. M. Edgar, R. L. Ariagno. Biological rhythmicity in preterm infants prior to discharge from neonatal intensive care. Pediatrics. 95(2): 231–237.(1995).

    PubMed  CAS  Google Scholar 

  60. S. A. Rivkees, L. Mayes, H. Jacobs, I. Gross. Rest-activity patterns of premature infants are regulated by cycled lighting. Pediatrics.:in press.(2004).

    Google Scholar 

  61. M. Mirmiran, R. L. Ariagno. Influence of light in the NICU on the development of circadian rhythms in preterm infants. Semin Perinatol. 24(4):247–257.(2000).

    Article  PubMed  CAS  Google Scholar 

  62. N. P. Mann, R. Haddow, L. Stokes, S. Goodley, N. Rutter. Effect of night and day on preterm infants in a newborn nursery: randomised trial. Br Med J (Clin Res Ed). 293(6557):1265–1267.(1986).

    Article  CAS  Google Scholar 

  63. D. H. Brandon, D. Holditch-Davis, M. Belyea. Preterm infants born at less than 31 weeks’ gestation have improved growth in cycled light compared with continuous near darkness. J Pediatr. Feb;140(2):192–199.(2002).

    Article  PubMed  Google Scholar 

  64. M. Mirmiran, S. Lunshof. Perinatal development of human circadian rhythms. Prog.Brain Res.;111:217–26:217–226.(1996).

    Article  PubMed  CAS  Google Scholar 

  65. K. Mcgraw, R. Hoffmann, C. Harker, J. H. Herman. The development of circadian rhythms in a human infant. Sleep. May 1;22(3):303–310.(1999).

    PubMed  CAS  Google Scholar 

  66. R. L. Ariagno, M. Mirmiran. Shedding light on the very low birth weight infant. J Pediatr. Oct;139(4):476–477.(2001).

    Article  PubMed  CAS  Google Scholar 

  67. P. Glass, G. B. Avery, K. N. Subramanian, M. P. Keys, A.M. Sostek, D. S. Friendly. Effect of bright light in the hospital nursery on the incidence of retinopathy of prematurity. N.Engl.J.Med.;313(7):401–404.(1985).

    Article  PubMed  CAS  Google Scholar 

  68. A. R. Fielder, M. J. Moseley. Environmental light and the preterm infant. Semin Perinatol. 24(4):291–298.(2000).

    Article  PubMed  CAS  Google Scholar 

  69. J. D. Reynolds, R. J. Hardy, K. A. Kennedy, R. Spencer, W. A. Van Heuven, A. R. Fielder. Lack of efficacy of light reduction in preventing retinopathy of prematurity. Light Reduction in Retinopathy of Prematurity (LIGHT-ROP) Cooperative Group. N.Engl.J.Med.; 338(22):1572–1576.(1998).

    Article  PubMed  CAS  Google Scholar 

  70. K. A. Kennedy, A. R. Fielder, R. J. Hardy, B. Tung, D. C. Gordon, J. D. Reynolds. Reduced lighting does not improve medical outcomes in very low birth weight infants. J Pediatr.;139(4):527–531.(2001).

    Article  PubMed  CAS  Google Scholar 

  71. H. Als, G. Lawhon, F. H. Duffy, G. B. Mcanulty, R. Gibes-Grossman, J.G. Blickman. Individualized developmental care for the very low-birth-weight preterm infant. Medical and neurofunctional effects. Jama. 21;272(11):853–858.(1994).

    Article  PubMed  CAS  Google Scholar 

  72. R. L. Ariagno, E. B. Thoman, M. A. Boeddiker, et al. Developmental care does not alter sleep and development of premature infants. Pediatrics. 100(6):E9.(1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Rivkees, S.A. (2006). The Development and Regulation of Expressed Rhythmicity in Infants. In: Cardinali, D.P., Pandi-Perumal, S.R. (eds) Neuroendocrine Correlates of Sleep/Wakefulness. Springer, Boston, MA. https://doi.org/10.1007/0-387-23692-9_12

Download citation

Publish with us

Policies and ethics