Analysis of Crude Petroleum Oils Using Fluorescence Spectroscopy

  • Alan G. Ryder
Part of the Reviews in Fluorescence book series (RFLU, volume 2005)

Abstract

Crude oil is defined as “a mixture of hydrocarbons that existed in the liquid phase in natural underground reservoirs and remains liquid at atmospheric pressure after passing through surface separating facilities” (joint American Petroleum Institute, American Association of Petroleum Geologists, and Society of Petroleum Engineers definition).1 Crude petroleum oils are complex mixtures of different compounds (mainly organic), which are obtained from an extensive range of different geological sources.2,3 Their physical appearance can vary from solid black tars to almost transparent liquids. In their natural state within an oilfield reservoir or entrapped within Hydrocarbon bearing Fluid Inclusions (HCFI), crude oils will also contain varying amounts of gasses (carbon dioxide, methane, etc.).4 This presents the analyst with considerable challenges when developing methods for the characterisation and analysis of crude oils.5 The non-contact, non-destructive, quantitative analysis of crude petroleum oils is a highly desirable objective for both research (e.g. study of microscopic HCFI) and industry (e.g. real-time assessment of oil production). Satisfying the needs of both macroscopic and microscopic applications is not straightforward, however, optical methods offer a convenient route to achieving these goals. Fluorescence spectroscopy is the best available optical technique, because it offers high sensitivity, good diagnostic potential, relatively simple instrumentation, and is perfectly suited to both microscopy and portable instrumentation

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.10. References

  1. 1.
    R. C. Selley, Elements of Petroleum Geology, 2 nd. Ed., (Academic Press, 1998).Google Scholar
  2. 2.
    J. M. Hunt, Petroleum Geochemistry and Geology, (W.H. Freeman and Company San Francisco, 1979).Google Scholar
  3. 3.
    F. K. North, Petroleum Geology, (Chapman & Hall, London, 1985).Google Scholar
  4. 4.
    O. C. Mullins, T. Daigle, C. Crowell, H. Groenzin, and N. B. Joshi, Gas-oil ratio of live crude oils determined by near-infrared spectroscopy, Appl. Spectrosc. 55(2), 197–201 (2001).CrossRefGoogle Scholar
  5. 5.
    Z. D. Wang and M. F. Fingas, Development of oil hydrocarbon fingerprinting and identification techniques, Mar. Pollut. Bull. 47(9–12), 423–452 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    American Society for the Testing of Materials, Annual Book of ASTM Standards, Section 5, Petroleum Products and Lubricants (I-IV), 2003.Google Scholar
  7. 7.
    Institute of Petroleum, Standard Methods for Analysis and Testing of Petroleum and Related Products and British Standard 2000 Parts, (John Wiley & Sons, 2001)Google Scholar
  8. 8.
    D. E. Nicodem, C. L. B. Guedes, M. Conceição, Z. Fernandes, D. Severino, R. J. Correa, M. C. Coutinho, and J. Silva, Photochemistry of petroleum, Prog. React. Kinect. Mec. 26(2–3), 219–238 (2001).Google Scholar
  9. 9.
    O. C. Mullins in: Structure and Dynamics of Asphaltenes, edited by O. C. Mullins and E. Y. Sheu, (Plenum Press, New York, 1998), pp. 21–77.Google Scholar
  10. 10.
    A. G. Ryder, A time-resolved fluorescence spectroscopic study of crude petroleum oils: influence of chemical composition, Appl. Spectrosc. 58(5), 613–623 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    M. E. Abu-Zeid, K. S. Bhatia, M. A. Marafi, Y. Y. Makdisi, and M. F. Amer, Measurement of fluorescence decay of crude oil: a potential technique to identify oil slicks, Environ. Pollut. 46, 197–207 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    B. Alpern, M. J. L. DeSousa, H. J. Pinheiro, and X. Zhu, Detection and evaluation of hydrocarbons insource rocks by fluorescence microscopy, Org. Geochem. 20(6), 789–795 (1993).CrossRefGoogle Scholar
  13. 13.
    A. Blanchet, M. Pagel, F. Walgenwitz, and A. Lopez, Microspectrofluorimetric and micro thermometric evidence for variability in hydrocarbon fluid inclusions in quartz overgrowths: implications for inclusion trapping in the Alwyn North field, North Sea, Org. Geochem. 34(11), 1477–1490 (2003).CrossRefGoogle Scholar
  14. 14.
    P. Camagni, A. Colombo, C. Koechler, N. Omenetto, P. Qi, and G. Rossi, Fluorescence response of mineral oils: spectral yield vs absorption and decay time, Appl. Opt. 30(1), 26–35 (1991).Google Scholar
  15. 15.
    H. W. Hagemann and A. Hollerbach, The fluorescence behavior of crude oils with respect to their thermal maturation and degradation, Org. Geochem. 10, 473–480 (1986).CrossRefGoogle Scholar
  16. 16.
    R. M. Measures, W. R. Houston, and D. G. Stephenson, Laser induced fluorescent decay spectra — a new form of environmental signature, Opt. Eng. 13(6), 494–501 (1974).Google Scholar
  17. 17.
    O. C. Mullins, S. Mitra-Kirtley, and Y. Zhu, The electronic absorption-edge of petroleum, Appl. Spectrosc. 46(9), 1405–1411 (1992).CrossRefGoogle Scholar
  18. 18.
    T. D. Downare and O. C. Mullins, Visible and near-infrared fluorescence of crude oils, Appl. Spectrosc. 49(6), 754–764 (1995).CrossRefGoogle Scholar
  19. 19.
    M. F. Quinn, S. Joubian, F. Al-Bahrani, S. Al-Aruri, and O. Alameddine, A de-convolution technique for determining the intrinsic fluorescence decay lifetimes of crude oils, Appl. Spectrosc. 42(3), 406–410 (1988).CrossRefGoogle Scholar
  20. 20.
    D. M. Rayner and A. G. Szabo, Time-resolved laser fluorosensors: A laboratory study of their potential in the remote characterization of oil, Appl Optics 17(10), 1624–1630 (1978).Google Scholar
  21. 21.
    A. G. Ryder, T. J. Glynn, M. Feely, and A. J. G. Barwise, Characterization of crude oils using fluorescence lifetime data, Spectrochim. Acta A 58(5), 1025–1037 (2002).CrossRefGoogle Scholar
  22. 22.
    A. G. Ryder, Quantitative analysis of crude oils by fluorescence lifetime and steady state measurements using 380 nm excitation, Appl Spectrosc. 56(1), 107–116 (2002).CrossRefGoogle Scholar
  23. 23.
    A. G. Ryder, T. J. Glynn, and M. Feely, Influence of chemical composition on the fluorescence lifetimes of crude petroleum oils, Proc SPIE — Int. Soc. Opt. Eng. 4876, 1188–1195 (2003).Google Scholar
  24. 24.
    L D. Stasiuk, T. Gentzis, and P. Rahimi, Application of spectral fluorescence microscopy for the characterization of Athabasca bitumen vacuum bottoms, Fuel. 79, 769–775 (2000).CrossRefGoogle Scholar
  25. 25.
    X. Wang and O. C. Mullins, Fluorescence lifetime studies of crude oils, Appl. Spectrosc. 48(8), 977–984 (1994).CrossRefGoogle Scholar
  26. 26.
    Y. Zhu and O. C. Mullins, Temperature dependence of fluorescence of crude oils and related compounds, Energy & Fuels. 6(5), 545–552 (1992).CrossRefGoogle Scholar
  27. 27.
    M. V. Reyes, Application of fluorescence techniques for mud-logging analysis of oil drilled with oil-based muds, SPE Formation Evaluation, 9(4), 300–305 (1994).Google Scholar
  28. 28.
    B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, and Y. Pouet, Chemical basis of fluorescence alteration of crude oils and kerogens. 1. Microfluorimetry of an oil and its isolated fractions — relationships with chemical-structure, Org. Geochem. 16(1–3), 451–460 (1990).CrossRefGoogle Scholar
  29. 29.
    G. Ellingsen and S. Fery-Forgues, Application de la spectroscopie de fluorescence à r’étude du pétrole: la défi de la complexité Rev. I. Fr. Petrol. 53(2), 201–216 (1998).Google Scholar
  30. 30.
    C. Y. Ralston, X. Wu, and O. C. Mullins, Quantum yields of crude oils, Appl Spectrosc. 50(12), 1563–1568 (1996).CrossRefGoogle Scholar
  31. 31.
    D. E. Nicodem, M. F. V. Da Cunha, and C. L. B. Guedes, Time-resolved single photon counting study of the quenching of fluorescent probes by petroleum: Probing the energy distribution of the nonaliphatic components, Appl. Spectrosc. 54(9), 1409–1411 (2000).CrossRefGoogle Scholar
  32. 32.
    A. G. Ryder, M. A. Przyjalgowski, M. Feely, B. Szczupak, and T. J. Glynn, Time-resolved fluorescence microspectroscopy for characterizing crude oils in bulk and hydrocarbon bearing fluid inclusions, Appl. Spectrosc. 58(9), 1106–1115 (2004).PubMedCrossRefGoogle Scholar
  33. 33.
    A. E. Dudelzak, S. M. Babichenko, L. V. Poryvkina, and K. J. Saar, Total luminescent spectroscopy for remote laser diagnostics of natural water conditions Appl. Optics 30(4), 453-(1991).Google Scholar
  34. 34.
    D. Patra and A. K. Mishra, Study of diesel fuel contamination by excitation emission matrix spectral subtraction fluorescence, Anal. Chim. Acta 454(2), 209–215 (2002).CrossRefGoogle Scholar
  35. 35.
    P. John and I. Soutar, Identification of crude oils by synchronous excitation spectrofluorimetry, Anal. Chem. 48(3), 520–524 (1976).CrossRefGoogle Scholar
  36. 36.
    S. G. Wakeham, Synchronous fluorescence spectroscopy and its application to indigenous and petroleum-derived hydrocarbons in Lacustrine sediments, Environ. Sci. Technol. 11(3), 272–276 (1977).CrossRefGoogle Scholar
  37. 37.
    J. M. Song and L. F. Wang, Study on the characteristic and significance of synchronous fluorescence spectrum of crude oil and nature gas samples, Spectrosc. Spect. Anal. 22(5), 803–805 (2002).Google Scholar
  38. 38.
    D. Patra, K. L. Sireesha, and A. K. Mishra, Determination of synchronous fluorescence scan parameters for certain petroleum products, J. Sci. Ind. Res. India 59(4), 300–305 (2000).Google Scholar
  39. 39.
    D. Patra and A. K. Mishra, Concentration dependent red shift: qualitative and quantitative investigation of motor oils by synchronous fluorescence scan, Talanta 53(4), 783–790 (2001).CrossRefPubMedGoogle Scholar
  40. 40.
    E. Buenrostro-Gonzalez, S. I. Andersen, J. A. Garcia-Martinez, C. Lira-Galeana, Solubility/molecular structure relationships of asphaltenes in polar and nonpolar media, Energ. Fuel. 16(3), 732–741 (2002).CrossRefGoogle Scholar
  41. 41.
    L. J. Shadle, K. S. Seshadri, and D. L. Webb, Characterization of shale oils. 1. Analysis of Fischer assay oils and their aromatic fractions using advanced analytical techniques, Fuel Process. Technol. 37(2), 101–120 (1994).CrossRefGoogle Scholar
  42. 42.
    J. A. Musgrave, R. G. Carey, D. R. Janecky, and C. D. Tait, Adaption of synchronously scanned luminescence spectroscopy to organic-rich fluid inclusion microanalysis, Rev. Sci. lustrum. 65(6), 1877–1882 (1994).CrossRefGoogle Scholar
  43. 43.
    A. Permanyer, L. Douifi, A. Lahcini, J. Lamontagne, and J. Kister, FTIR and SUVF spectroscopy applied to reservoir compartmentalization: a comparative study with gas chromatography fingerprints results, Fuel 81(7) 861–866 (2002).CrossRefGoogle Scholar
  44. 44.
    L. A. Files, M. Moore, M. J. Kerkhoff, and J. D. Winefordner, Gasoline and crude-oil fingerprinting using constant energy synchronous luminescence spectrometry, Microchem. J. 35(3), 305–314 (1987).CrossRefGoogle Scholar
  45. 45.
    K. L. Yong and J. G. Lu, Common and diverse characteristics of three-dimensional fluorescence spectra of crude oils, Spectrosc. Lett. 33(6), 963–970 (2000).Google Scholar
  46. 46.
    J. Lu, and K. Yong, Fluorescence quenching phenomena in three-dimension of fluorescence determination of crude oils. Fenxi Shiyanshi 17(6), 28–31, (1998).Google Scholar
  47. 47.
    G. C. Smith and J. F. Sinski, The red-shift cascade: Investigations into the concentration-dependent wavelength shifts in three-dimensional fluorescence spectra of petroleum samples, Appl. Spectrosc. 53(11), 1459–1469 (1999).CrossRefGoogle Scholar
  48. 48.
    J. F. Sinski, B. S. Compton, B. S. Perkins, and M. C. Nicoson, Utilizing three-dimensional fluorescence’s red-shift cascade effect to monitor mycobacterium PRY-1 degradation of aged petroleum, Appl. Spectrosc. 58(1), 91–95 (2004).PubMedCrossRefGoogle Scholar
  49. 49.
    D. Patra and A. K. Mishra, Total synchronous fluorescence scan spectra of petroleum products, Anal. Bioanal. Chem. 373(4–5), 304–309 (2002).PubMedCrossRefGoogle Scholar
  50. 50.
    A. G. Ryder, Assessing the Maturity of crude petroleum oils using total synchronous fluorescence scan spectra, J. Fluor. 14(1), 99–104 (2004).CrossRefGoogle Scholar
  51. 51.
    X. Wu, E. B. Dussan V, and O. C. Mullins, Using an optical sensor to quantify the amount of oil, water, and gas in a water-continuous flow, Proc SPIE — Int. Soc. Opt. Eng. 3856, 298–307 (1999).Google Scholar
  52. 52.
    US Patent 6,704109 B2.Google Scholar
  53. 53.
    T. D. Downare, O. C. Mullins, and X. Wu, Optimization of a fluorescence detection system for the characterization of solids, Appl. Spectrosc., 48(12), 1483–1490 (1994).CrossRefGoogle Scholar
  54. 54.
    J. Bublitz, M. Dickenhausen, M. Gratz, S. Todt, and W. Schade, Fiberoptic laser-induced fluorescence probe for the detection of environmental-pollutants, Appl. Opt. 34(18), 3223–3233 (1995).CrossRefGoogle Scholar
  55. 55.
    W. Schade and J. Bublitz, On-site laser probe for the detection of petroleum products in water and soil, Environ. Sci. Technol. 30(5), 1451–1458 (1996).CrossRefGoogle Scholar
  56. 56.
    M. L. Pascu, N. Moise, and A. Staicu, Tunable dye laser applications in environment pollution monitoring, J. Mol. Struct. 598(1), 57–64 (2001).CrossRefGoogle Scholar
  57. 57.
    S. Landgraf, Application of semiconductor light sources for investigations of photochemical reactions, Spectrochim. Acta A 57(10), 2029–2048 (2001).CrossRefGoogle Scholar
  58. 58.
    S. Landgraf, Use of ultrabright LEDs for the determination of static and time-resolved florescence information of liquid and solid crude oil samples, J. Biochem. Bioph. Meth., In Press, (2004).Google Scholar
  59. 59.
    L. D. Stasiuk and L. R. Snowdon, Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: crude oil chemistry, density and application to petroleum migration, Appl. Geochem. 12(3), 229–233 (1997).CrossRefGoogle Scholar
  60. 60.
    P. L. Delaune, K. K. Spilker, S. A. Hanson, A. C. Wright, and R. Quagliaroli, Enhanced wellsite technique for oil detection and characterization, SPE-56802, in 1999 SPE annual technical conference and exhibition proceedings, v., Formation evaluation and reservoir geology, 801–816, (1999).Google Scholar
  61. 61.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd. ed (Kluwer Academic/Plenum Publishers, New York, 1999).Google Scholar
  62. 62.
    J. Pironon and B. Pradier, Ultraviolet-fluorescence alteration of hydrocarbon fluid inclusions, Org. Geochem. 18(4), 501–509 (1992).CrossRefGoogle Scholar
  63. 63.
    H. Szmacinski and J. R. Lakowicz in: Topics in fluorescence spectroscopy: Vol. 4. Probe Design and Chemical Sensing, edited by J. R. Lakowicz, Ed. (Plenum Press, New York, 1994), pp. 295–329.Google Scholar
  64. 64.
    D. J. S. Birch and R. E. Imhof, in: Topics in Fluorescence Spectroscopy, Vol. 1 Techniques, edited by J. R. Lakowicz (Plenum Press, New York and London, 1992), pp. 1–95.Google Scholar
  65. 65.
    M. A. Przyjalgowski and A. G. Ryder, unpublished results.Google Scholar
  66. 66.
    E. Roedder, Mineral Soc. Am., Rev. Mineral., 12, 1-(1984).Google Scholar
  67. 67.
    R. K. McLimans, The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs, Appl. Geochem. 2, 585–603 (1987).CrossRefGoogle Scholar
  68. 68.
    I. A. Munz, Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications, Lithos 55(1–4), 195–212 (2001).CrossRefGoogle Scholar
  69. 69.
    D. Emery and A. G. Robinson, Inorganic geochemistry: Applications to petroleum geology (Blackwell Science, UK, 1993).Google Scholar
  70. 70.
    N. Guilhaumou, N. Szydlowskii, and B. Pradier, Characterization of hydrocarbon fluid inclusions by infra-red and fluorescence microspectrometry, Mineral. Mag. 54, 311–324 (1990).CrossRefGoogle Scholar
  71. 71.
    B. Alpern, M. J. Lemos de Sousa, H. J. Pinheiro, and X. Zhu, Optical morphology of hydrocarbons and oil progenitors in sedimentary rocks-relations with geochemical parameters. Publ. Mus. Labor. miner. geol. Fac. Ciênc. Porto. 3, 1–21, (1992)Google Scholar
  72. 72.
    S. C. George, T. E. Ruble, A. Dutkiewicz, The use and abuse of fluorescence colours as maturity indicators of oil in inclusions from Australian petroleum systems. APPEA Journal. 41(1), 505–522 (2001).Google Scholar
  73. 73.
    S. C. George, T. E. Ruble, A. Dutkiewicz, and P. J. Eadington, Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours, Appl. Geochem. 16(4), 451–473 (2001).CrossRefGoogle Scholar
  74. 74.
    N. H. Oxtoby, Comments on: Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours, Appl. Geochem. 17(10), 1371–1374 (2002).CrossRefGoogle Scholar
  75. 75.
    S. C. George, T. E. Ruble, A. Dutkiewicz, and P. J. Eadington, Reply to comment by Oxtoby on “Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours”, Appl. Geochem. 17(10), 1375–1378 (2002).CrossRefGoogle Scholar
  76. 76.
    J. Kihle, Adaptation of fluorescence excitation-emission micro-spectroscopy for characterization of single hydrocarbon fluid inclusions, Org. Geochem. 23(11–12), 1029–1042 (1995).CrossRefGoogle Scholar
  77. 77.
    J. Pironon, Synthesis of hydrocarbon fluid inclusions at low temperature. Am. Mineral. 75, 226–229 (1990).Google Scholar
  78. 78.
    S. Teinturier and J. Pironon, Experimental growth of quartz in petroleum environment. part 1: procedures and fluid trapping, Geochim. Cosmochim. Ac. 68(11), 2495–2507 (2004).CrossRefGoogle Scholar
  79. 79.
    J. Pironon, M. Canals, J. Dubessy, F. Walgenwitz, and C. Laplace-Builhe, Volumetric reconstruction of individual oil inclusions by confocal scanning laser microscopy, Eur. J. Mineral. 10(6), 1143–1150 (1998).Google Scholar
  80. 80.
    C. E. Brown. R. D. Nelson, M. F. Fingas, and J. V. Mullin, Laser fluorosensor overflights of the Santa Barbara oil seeps, Spill Sci. Technoi B. 3(4), 227–230 (1996).CrossRefGoogle Scholar
  81. 81.
    C. E. Brown and M. F. Fingas, Review of the development of laser fluorosensors for oil spill application, Mar. Pollut. Bull. 47(9–12), 477–484 (2003).PubMedCrossRefGoogle Scholar
  82. 82.
    P. Lambert. M. Goldthorp, B. Fieldhouse, Z. Wang, M. Fingas, L. Pearson, and E. Collazzi, Field fluorometers as dispersed oil-in-water monitors, J. Hazard. Mater. 102(1), 57–79 (2003).PubMedCrossRefGoogle Scholar
  83. 83.
    M. F. Quinn, A. S. Al-Otaibi, A. Abdullah, P. S. Sethi, F. Al-Bahrani, and O. Alameddine, Determination of intrinsic fluorescence lifetime parameters of crude oils using a laser fluorosensor with a streak camera detection system, Instrum. Sci. Technoi. 23(3), 201–215 (1995).CrossRefGoogle Scholar
  84. 84.
    S. D. Alaruri, M. Rasas, O. Alamedine, S. Jubian, F. Al-Bahrani, and M. Quinn, Remote characterization of crude and refined oils using a laser fluorosensor system, Opt. Eng. 34(1), 214–221 (1995).CrossRefGoogle Scholar
  85. 85.
    D. M. Rayner, M. Lee, and A. G. Szabo, Effect of sea-state on performance of laser fluorosensors, Appl. Optics 17(17), 2730–2733 (1978).Google Scholar
  86. 86.
    J. S. Knoll, Visible fluorescence from ultraviolet excited crude oil, Appl. Optics 24(14), 2121–2123 (1985).CrossRefGoogle Scholar
  87. 87.
    T. Hengstermann and R. Reuter, Lidar fluorosensing of mineral oil spills on the sea surface, Appl. Optics, 29(22), 3218–3227 (1990).Google Scholar
  88. 88.
    D. E. Nicodem, C. L. B. Guedes, and R. J. Correa, Photochemistry of petroleum I. Systematic study of a Brazilian intermediate crude oil, Mar. Chem. 63(1–2), 93–104 (1998).CrossRefGoogle Scholar
  89. 89.
    A. Boukir, M. Guiliano, L. Asia, A. El Hallaoui, G. Mille, A fraction to fraction study of photo-oxidation of BAL 150 crude oil asphaltenes, Analusis 26(9), 358–364 (1998).CrossRefGoogle Scholar
  90. 90.
    J. Li, S. Fuller, J. Cattle, C. Pang Way, and D. B. Hibbert, Matching fluorescence spectra of oil spills with spectra from suspect sources, Anal. Chim. Acta 514(1), 51–56 (2004).CrossRefGoogle Scholar
  91. 91.
    T. J. Killeen, D. Eastwood and M. Schulz Hendrick, Oil-matching by using a simple vector model for fluorescence spectra, Talanta 28(1), 1–6 (1981).CrossRefPubMedGoogle Scholar
  92. 92.
    J. M. Andrews and S. H. Lieberman, Neural-Network approach to qualitative identification of fuels and oils from laser-induced fluorescence-spectra, Anal. Chim. Acta 285(1–2), 237–246 (1994).CrossRefGoogle Scholar
  93. 93.
    L. M. He, L. L. Kear-Padilla, S. H. Lieberman, and J. M. Andrews, Rapid in situ determination of total oil concentration in water using ultraviolet fluorescence and light scattering coupled with artificial neural networks, Anal. Chim. Acta 478(2), 245–258 (2003).CrossRefGoogle Scholar
  94. 94.
    T. A. Dolenko, V. V. Fadeev, I. V. Gerdova, S. A. Dolenko, and R. Reuter, Fluorescence diagnostics of oil pollution in coastal marine waters by use of artificial neural networks, Appl. Optics 41(24), 5155–5166 (2002).CrossRefGoogle Scholar
  95. 95.
    F. C. Albuquerque, D. E. Nicodem, K. Rajagopal, Investigation of asphaltene association by front-face fluorescence spectroscopy, Appl. Spectrosc. 57(7), 805–810 (2003).PubMedCrossRefGoogle Scholar
  96. 96.
    S. I. Andersen, A. Keul, and E. Stenby, Variation in composition of subfractions of petroleum asphaltenes. Petrol Sci. Technol. 15(7–8), 611–645 (1997).CrossRefGoogle Scholar
  97. 97.
    H. Groenzin, and O. C. Mullins, Asphaltene molecular size and structure, J. Phys. Chem. A 103(50), 11237–11245 (1999).CrossRefGoogle Scholar
  98. 98.
    H. Groenzin and O. C. Mullins, Molecular size and structure of asphaltenes from various sources, Energy & Fuels 14(3), 677–684 (2000).CrossRefGoogle Scholar
  99. 99.
    H. Groenzin, O. C. Mullins, S. Eser, J. Mathews, M. G. Yang, and D. Jones, Molecular size of asphaltene solubility fractions, Energy & Fuels 17(2), 498–503 (2003).CrossRefGoogle Scholar
  100. 100.
    L. Buch, H. Groenzin, E. Buenrostro-Gonzalez, S.I. Andersen, C. Lira-Galeana, and O. C. Mullins, Molecular size of asphaltene fractions obtained from residuum hydrotreatment, Fuel 82(9), 1075–1084 (2003).CrossRefGoogle Scholar
  101. 101.
    G. K. Khorasani and J. K. Michelsen, Four-dimensional fluorescence imaging of oil generation: development of a new fluorescence imaging technique, Org. Geochem. 22( 1), 211–223 (1995).CrossRefGoogle Scholar
  102. 102.
    J. R. Kershaw and J. C. Fetzer, The room-temperature fluorescence analysis of polycyclic aromatic-compounds in petroleum and related materials, Polycycl. Aromat. Comp. 7(4). 253–268 (1995).CrossRefGoogle Scholar
  103. 103.
    H. G. Lohmannsroben and T. Roch, In situ laser-induced fluorescence (LIF) analysis of petroleum product-contaminated soil samples, J. Environ. Monitor. 2(1), 17–22 (2000).CrossRefGoogle Scholar
  104. 104.
    P. E. Kepkay, J. B. C. Bugden, K. Lee, and P. Stoffyn-Egli, Application of ultraviolet fluorescence spectroscopy to monitor oil-mineral aggregate formation, Spill Sci. Technol. B. 8(1). 101–108 (2002).CrossRefGoogle Scholar
  105. 105.
    B. T. Hargrave and G. A. Phillips, Estimates of oil in aquatic sediments by fluorescence spectroscopy. Environ. Pollut. 8(3), 193–215 (1975).CrossRefGoogle Scholar
  106. 106.
    S. S. Al-Lihaibi and L. Al-Omran, Petroleum hydrocarbons in offshore sediments from the gulf, Mar. Pollut. Bull. 32(1), 65–69 (1996).CrossRefGoogle Scholar
  107. 107.
    P. Lianos, J. Lang, J. Sturm, and R. Zana, Fluorescence-probe study of oil-in-water microemulsions. 3. further investigations involving other surfactants and oil mixtures. J. Phys. Chem. 88(4), 819–822 (1984).CrossRefGoogle Scholar
  108. 108.
    M. Picer, Simple spectrofluorometry methods for estimating petroleum hydrocarbons levels in various sea benthic organisms, Chemosphere 37(4), 607–617 (1998).CrossRefGoogle Scholar
  109. 109.
    W. L. Huang and G. A. Otten, Cracking kinetics of crude oil and alkanes determined by diamond anvil cell-fluorescence spectroscopy pyrolysis: technique development and preliminary results, Org. Geochem. 32(6), 817–830 (2001).CrossRefGoogle Scholar
  110. 110.
    E. Hegazi, A. Hamdan, and J. Mastromarino, New approach for spectral characterization of crude oil using time-resolved fluorescence spectra, Appl. Spectrosc. 55(2), 202–207 (2001).CrossRefGoogle Scholar
  111. 111.
    E. Hegazi and A. Hamdan, Estimation of crude oil grade using time-resolved fluorescence spectra, Talanta 56(6), 989–995 (2002).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Alan G. Ryder
    • 1
  1. 1.Department of Chemistry, and National Centre for Biomedical Engineering ScienceNational University of Ireland — GalwayGalwayIreland

Personalised recommendations