Skip to main content

Time-Resolved Fluorescence in Biomedical Diagnostics

  • Chapter

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2005))

Abstract

The application of time-resolving fluorescence techniques in biomedical research has been a challenge for many years. Since radiative and non-radiative transitions from the excited state of a molecule to its ground state are competing, the fluorescence lifetime (given as the reciprocal of the sum of all transition rates) of a molecule is sensitive to numerous parameters, e.g. its conformation or interaction with adjacent molecules. Therefore, fluorescence lifetime measurements can give numerous informations about the microenvironment of specific molecules

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7.5. References

  1. S. Udenfriend, Fluorescence Assay in Biology and Medicine (Academic Press, New York — San Francisco — London, 1962).

    Google Scholar 

  2. D.V. O’Connor and D. Philipps, Time-correlated single photon counting (Academic Press, New York — San Francisco — London, 1984).

    Google Scholar 

  3. J.R. Lakowicz, G. Laczko, I. Gryczinski, H. Szmacinski, and W. Wiczk, Gigahertz frequency domain fluorometry: resolution of complex decays, picosecond processes and future developments, J. Photochem. Photobiol. B:Biol. 2, 295–311 (1988).

    Article  CAS  Google Scholar 

  4. H. Schneckenburger, F. Pauker, E. Unsold, and D. Jocham, Intracellular distribution and retention of the fluorescent components of Photofrin II, Photobiochem. Photobiophys 10, 61–67 (1985).

    CAS  Google Scholar 

  5. I. Bugiel, K. König, and H. Wabnitz, Investigation of cells by fluorescence laser scanning microscopy with subnanosecond resolution, Lasers Life Sci. 3, 47–53 (1989).

    Google Scholar 

  6. E.P. Buurman, R. Sanders, A. Draijer, H.C. Gerritsen, J.J.F. van Veen, P.M. Houpt, and Y.K. Levine. Fluorescence lifetime imaging using a confocal laser scanning microscope, Scanning 14, 155–159 (1992).

    Google Scholar 

  7. H.C. Gerritsen, M.A. Asselbergs, A.V. Agronskaia, and W.G. van Sark, Fluorescence lifetime imaging in scanning microscopes: acquisition, speed, photon economy and lifetime resolution, J. Microsc. 206, 218–224 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. W. Becker, A. Bergmann, M.A. Mink, K. König, K. Benndorf, and C. Biskup, Fluorescence lifetime imaging by time-correlated single photon counting, Micr. Res. Techn. 63, 58–66 (2004).

    Article  CAS  Google Scholar 

  9. J.R. Lakowicz and K. Berndt, Lifetime-selective fluorescence imaging using an rf phase-sensitive camera, Rev. Sci. lnstrum. 62, 1727–1734 (1991).

    Article  CAS  Google Scholar 

  10. T.W.J. Gadella, T.M. Jovin, and R.M. Clegg, Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale, Biophys. Chem. 48, 221–239 (1993).

    Article  CAS  Google Scholar 

  11. A. Squire, P.J. Verveer, and P.I.H. Bastiaens, Multiple frequency fluorescence lifetime imaging microscopy, J. Microsc. 197, 136–149 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. M. Kohl, J. Neukammer, U. Sukowski, H. Rinneberg, D. Wöhrle, H.-J. Sinn, and A. Friedrich, Delayed observation of laser-induced fluorescence for imaging of tumours, Appl. Phys. B56, 131–138 (1993).

    Google Scholar 

  13. H. Schneckenburger, K. König, T. Dienersberger, and R. Hahn, Time-gated microscopic imaging and spectroscopy in medical diagnosis and photobiology, Opt. Eng. 33, 2600–2606 (1994).

    Article  Google Scholar 

  14. M.J. Cole, J. Siegel, S.E. Webb, R. Jones, K. Dowling, M.J. Dayel, D. Parsons-Karavassilis, P.M. French, M.J. Lever, L.O. Sucharov, M.A. Neil, R. Juskaitis and T. Wilson, Time-domain whole-field fluorescence lifetime imaging with optical sectioning, J. Microsc. 203, 246–257 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. W. Halle, W.-E. Siems, K.D. Jentzsch, E. Teuscher, and E. Gores, Die in vitro kultivierte Aorten-Endothelzelle in der Wirkstofforschung-Zellphysiologische Charakterisierung und Einsatzmöglichkeiten der Zellinie BKEz-7, Die Pharmazie 39, 77–81 (1984).

    PubMed  CAS  Google Scholar 

  16. K. Stock, R. Sailer, W.S.L. Strauss, M. Lyttek, R. Steiner, and H. Schneckenburger, Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device, J. Microsc, 211, 19–29 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. M.H. Gschwend, R. Rüdel, W.S.L. Strauss, R. Sailer, H. Brinkmeier, and H. Schneckenburger, Optical detection of mitochondrial NADH content in human myotubes, Cell. Mol. Biol. 47, OL95–OL104 (2001).

    PubMed  CAS  Google Scholar 

  18. K.A. Horvath, K.T. Shomacker, C.C. Lee, and L.H. Cohn, Intraoperative myocardial ischemia detection with laser-induced fluroescence, J. Thorac. Cardiovasc. Surg. 107, 220–225 (1994).

    PubMed  CAS  Google Scholar 

  19. E.T. Obi-Tabo, L.M. Hanrahan, R. Cachecho, E.R. Beer, S.R. Hopkins, J.C. Chan, J.M. Shapiro, and W.W. LaMorte, Changes in hepatocyte NADH fluorescence during prolonged hypoxia, J. Surg. Res. 55, 575–580 (1993).

    Article  Google Scholar 

  20. W. Lohmann and E. Paul, In situ detection of melanomas by fluorescence measurements, Natunvissenschqften 75, 201–202 (1988).

    Article  CAS  Google Scholar 

  21. G.A. Wagnières, M.S. Willem, and B.C. Wilson (1998). In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol., 68, 603–632.

    Article  PubMed  Google Scholar 

  22. A.C. Croce, A. Spano, D. Locatelli, S. Bami, L. Sciola, and G. Bottiroli, Dependence of fibroblast autofluorescence properties on normal and transformed conditions. Role of the metabolic activity, Photochem. Photobiol. 69, 364–374 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. L. Rigacci, R. Alterini, P.A. Bernabei, P.R. Ferrini, G. Agati, F. Fusi, and M. Monici, Multispectral imaging autofluroescence microscopy for the analysis of lymph-node tissues, Photochem. Photobiol. 71, 737–742 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. M. Wakita, G. Nishimura, and M. Tamura, Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes and perfused rat liver in situ, J. Bwchem. 118, 1151–1160 (1995).

    CAS  Google Scholar 

  25. H. Schneckenburger, M.H. Gschwend, W.S.L. Strauss, R. Sailer, M. Kron, U. Steeb, and R. Steiner, Energy transfer spectroscopy for measuring mitochondrial metabolism in living cells, Photochem. Photobiol. 66, 34–41 (1997).

    PubMed  CAS  Google Scholar 

  26. R.-J. Paul and H. Schneckenburger, Oxygen concentration and the oxidation-reduction state of yeast: determination of free/bound NADH and flavins by time-resolved spectroscopy, Natunvissenschqften 82, 32–35 (1996).

    Article  Google Scholar 

  27. R.J. Paul, J. Gohla, R. Föll, and H. Schneckenburger, Metabolic adaptations to environmental changes in Caenorhabditis elegans, Comp. Bwchem. Physiol. B 127, 469–479 (2000).

    Google Scholar 

  28. J.-M. Salmon, E. Kohen, P. Viallet, J.G. Hirschberg, A.W. Wouters, C. Kohen, and B. Thorell, Microspectrofluorometric approach to the study of free/bound NAD(P)H ratio as metabolic indicator in various cell types, Photochem. Photobiol. 36, 585–593 (1982).

    PubMed  CAS  Google Scholar 

  29. H. Schneckenburger, M.H. Gschwend, R. Sailer, H.-P. Mock, and W.S.L. Strauss, Time-gated fluorescence microscopy in molecular and cellular biology, Cell. Mol. Biol. 44, 795–805 (1998).

    PubMed  CAS  Google Scholar 

  30. H. Schneckenburger, M. Wagner, P. Weber, W.S.L. Strauß, and R. Sailer, Autofluorescence lifetime imaging of cultivated cells using a novel uv picosecond laser diode, J. Fluoresc. (in press).

    Google Scholar 

  31. T. Förster, Zwischenmolekularer Übergang von Elektronenanregungsenergie, Z. Elektrochem. 64, 157–164 (1960).

    Google Scholar 

  32. II. Schneckenburger, K. Stock, M. Lyttek, W.S.L. Strauss, and R. Sailer, Fluorescence lifetime imaging (FLIM) of rhodamine 123 in living cells. Photochem. Photobiol. Sci. 3, 127–131 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. D. Axelrod, Cell-substrate contacts illuminated by total internal reflection fluorescence, J. Cell Biol. 89, 141–145(1981).

    Article  PubMed  CAS  Google Scholar 

  34. G.A. Truskey, J.S. Burmeister, E. Grapa, and W.M. Reichert, Total internal reflection fluorescence microscopy (TIRFM) (II) Topographical mapping of relative cell/substratum separation distances, J. Cell Sci. 103, 491–499 (1992).

    PubMed  Google Scholar 

  35. S.E. Sund and D. Axelrod, D, Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching, Biophys. J. 79, 1655–1669 (2000).

    PubMed  CAS  Google Scholar 

  36. N.L. Thompson, A.W. Drake, L. Chen, and W.V. Broek, Equilibrium, kinetics, diffusion and self-association of proteins at membrane surfaces: Measurement by total internal reflection fluorescence microscopy, Photochem. Photobiol. 65, 39–46 (1997).

    PubMed  CAS  Google Scholar 

  37. G.M. Omann and D. Axelrod, Membrane-proximal calcium transients in stimulated neutrophils detected by total internal reflection fluorescence. Biophys. J. 71, 2885–2891 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. W.J. Betz, F. Mao, and C.B. Smith, Imaging exocytosis and endocytosis, Curr. Opin. Neurobiol. 6, 365–371 (1996).

    Article  PubMed  CAS  Google Scholar 

  39. M. Oheim, D. Loerke, W. Stühmer, and R.H. Chow, Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles, Eur. J. Biophys. 28, 91–101 (1999).

    Article  CAS  Google Scholar 

  40. T. Parasassi, G. de Stasio, A. d’Ubaldo, and E. Gratton, Phase fluctuation in phosopholipid membranes revealed by laurdan fluorescence, Biophys. J. 57, 1179–1181 (1990).

    PubMed  CAS  Google Scholar 

  41. T. Parasassi, E.K. Krasnowska, L. Bagatolli, and E. Gratton, Laurdan and prodan as polarity-sensitive fluorescent membrane probes, J. Fluoresc. 4, 365–373 (1998).

    Article  Google Scholar 

  42. L.A. Bagatolli, T. Parasassi, G.D. Fidelio, and E. Gratton, A model for the interaction of 6-lauroyI-2-(N,N-dimethylamino) naphthalene with lipid environments: implications for spectral properties, Photochem. Photobiol., 70, 557–564 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. H. Schneckenburger, K. Stock, W.S.L. Strauss, J. Eickholz, and R. Sailer, Time-gated total internal reflection fluorescence spectroscopy (TG-TIRFS): application to the membrane marker laurdan, J. Microsc. 211, 30–36 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. H. Schneckenburger, M. Wagner, M. Kretzschmar, W.S.L. Strauss, and R. Sailer, Laser-assisted fluorescence microscopy for measuring cell membrane dynamics, Photochem. Photobiol. Sci. (in press).

    Google Scholar 

  45. Z. Malik and H. Lugaci, Destruction of erythroleukaemic cells by photoinactivaton of endogenous porphyrins, Br. J. Cancer 56, 589–595 (1987).

    PubMed  CAS  Google Scholar 

  46. H. Kostron, A. Obwegeser, and M. Seiwald, PDT in neurosurgery; a review, J. Photochem. Photobiol. 36, 157–168 (1996).

    Article  CAS  Google Scholar 

  47. R. Sailer, W.S.L. Strauss, H. Emmert, M. Wagner, R. Steiner, and H. Schneckenburger, Photodynamic efficacy and spectroscopic porperties of 5-aminolevulinic acid induced portoporphyrin IX in U373-MG glioblastoma cells, in preparation.

    Google Scholar 

  48. H. Schneckenburger, K. König, K. Kunzi-Rapp, C. Westphal-Frösch, and A. Ruck, Time-resolved in-vivo fluorescence of photosensitizing porphyrins, J. Photochem. Photobiol. B:Biol. 21, 143–147 (1993).

    Article  CAS  Google Scholar 

  49. S. Brasselet, E.J.G. Peterman, A. Miyawaki, and W.E. Moerner, Single-molecule fluorescence energy transfer in calcium concentration dependent cameleon, J. Phys. Chem. B104, 3676–3682 (2000).

    Google Scholar 

  50. M.F. Garcia-Parajo, G.M.J. Segers-Nolten, J.-A. Veerman, J. Greve, and N.F. Van Hulst, Real-time light-driven dynamics of the fluorescence emission in single green fluorescent protein molecules, Proc. Natl. Sci. USA 97, 7237–7242 (2000).

    Article  CAS  Google Scholar 

  51. C. Eggelinh, J.R. Fries, L. Brand, R. Günther, and C.A.M. Seidel, Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy, Proc. Natl. Sci. USA 95, 1556–1561 (1998).

    Article  Google Scholar 

  52. Y. Sako, S. Minoguchi, and T. Yabagida, Single-molecule imaging of RGFR signalling on the surface of living cells, Nature Cell. Biol. 2, 168–172 (2000).

    Article  PubMed  CAS  Google Scholar 

  53. C.W. Cody, D.C. Prasher, W.M. Westler, F.G. Prendergast, and W.W. Ward, Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein, Biochemistry 32, 1212–1218 (1993).

    Article  PubMed  CAS  Google Scholar 

  54. C.G. Coates, D.J. Denvir. N.G. McHale, K.D. Thornbury, and M.A. Hollywood, Ultra-sensitivity, speed and resolution: optimizing low-light microscopy with the back-illuminated electron-multiplying CCD, in Confocal, Multiphoton and Nonlinear Microscopic Imaging, editied by T. Wilson (Proc. SPIE, Vol. 5139, Belllingham, 2003) pp. 56–66.

    Google Scholar 

  55. T. Bruns, Screening of cell surfaces, Master Thesis, Hochschule Aalen (2004).

    Google Scholar 

  56. H. Schneckenburger, M.H. Gschwend, R. Sailer, W.S.L. Strauss, M. Lyttek, K. Stock, and P. Zipfl, Time-resolved in situ measurement of mitochondrial malfunction by energy transfer spectroscopy, J. Biomed. Opt. 5, 362–366 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Schneckenburger, H., Wagner, M. (2005). Time-Resolved Fluorescence in Biomedical Diagnostics. In: Geddes, C.D., Lakowicz, J.R. (eds) Reviews in Fluorescence 2005. Reviews in Fluorescence, vol 2005. Springer, Boston, MA. https://doi.org/10.1007/0-387-23690-2_7

Download citation

Publish with us

Policies and ethics