(Generalized) Convexity and Discrete Optimization

  • Rainer E. Burkard
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 77)


This short survey exhibits some of the important roles (generalized) convexity plays in integer programming. In particular integral polyhedra are discussed, the idea of polyhedral combinatorics is outlined and the use of convexity concepts in algorithmic design is shown. Moreover, combinatorial optimization problems arising from convex configurations in the plane are discussed.


Integral polyhedra polyhedral combinatorics integer programming convexity combinatorial optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggarwal, A., Guibas, L.J., Saxe, J., and Shor, P.W. (1989), A linear algorithm for computing the Voronoi diagram of a convex polygon, Discrete Comp. Geom., Vol. 4, 591–604.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bank, B. and Mandel, R. (1988), (Mixed-) Integer solutions of quasiconvex polynomial inequalities. In: Advances in Mathematical Optimization, J. Guddat et al. (eds), Akademie Verlag, Berlin, pp. 20–34.Google Scholar
  3. Berge, C. (1972), Balanced matrices, Math. Programming, Vol. 2, 19–31.zbMATHMathSciNetCrossRefGoogle Scholar
  4. Brixius, N.W. and Anstreicher, K.W. (2001), Solving quadratic assignment problems using convex quadratic programming relaxations, dedicated to Professor Laurence C. W. Dixon on the occasion of his 65th birthday, Optim. Methods Softw., Vol. 16, 49–68.MathSciNetzbMATHGoogle Scholar
  5. Burkard, R.E. (1972), Methoden der ganzzahligen Optimierung. (Springer, Vienna), 1972.zbMATHGoogle Scholar
  6. Burkard, R.E. (1990), Special cases of the travelling salesman problem and heuristics, Acta Mathematicae Applicatae Sinica, Vol. 6, 273–288.zbMATHMathSciNetCrossRefGoogle Scholar
  7. Burkard, R.E., Deřneko, V.G., van Dal, R., van der Veen, J.A.A., and Woeginger G.J. (1998), Well-solvable special cases of the travelling salesman problem: a survey, SIAM Review, Vol. 40, 496–546.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Burkard, R.E., Klinz, B., and Rudolf, R. (1996), Perspectives of Monge properties in optimization, Discrete Appl. Mathematics Vol. 70, 95–161.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Burkard, R.E. and Rudolf, R. (1993), Computational investigations on 3-dimensional axial assignment problems, Belgian J. of Operations Research, Vol. 32, 85–98.Google Scholar
  10. Christopher, G., Farach, M., and Trick, M. (1996), The structure of circular decomposable metrics, in: Algorithms — ESA’ 96, Lecture Notes in Comp. Sci., Vol. 1136, Springer, Berlin, pp.486–500.Google Scholar
  11. Conforti, M., Cornuéjols, G., and Rao, M.R. (1999), Decomposition of balanced matrices, J. Combinatorial Theory Ser. B, Vol. 77, 292–406.CrossRefzbMATHGoogle Scholar
  12. Cornuéjols, G. (2001), Combinatorial Optimization: Packing and Covering, SIAM, Philadelphia.zbMATHGoogle Scholar
  13. Deřneko, V.G., Rudolf, R., and Woeginger, G.J. (1998), Sometimes traveling is easy: The master tour problem, SIAM J. Discrete Math., Vol. 11, 81–83.MathSciNetCrossRefGoogle Scholar
  14. Edmonds, J. (1965), Maximum matching and a polyhedron with 0–1 vertices, J. Res. Nat. Bur. Standards, Vol 69b, 125–130.MathSciNetGoogle Scholar
  15. Fulkerson, D.R., Hoffman, A.J., and Oppenheim, R. (1974), On balanced matrices, Math. Programming Studies, Vol. 1, 120–132.MathSciNetGoogle Scholar
  16. Goldman, A.J. (1971), Optimal center location in simple networks, Transportation Science, Vol. 5, 212–221.MathSciNetCrossRefGoogle Scholar
  17. Garey, M.R., Graham, R.L., and Johnson, D.S. (1977), The complexity of computing Steiner minimal trees, SIAM J. Appl. Math., Vol. 32, 835–859.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Grötschel, M., Lovász, L., and Schrijver, A. (1988), Geometric Algorithms and Combinatorial Optimization, Springer, Berlin.zbMATHGoogle Scholar
  19. Held, M. and Karp, R.M. (1971), The traveling-salesman problem and minimum spanning trees: Part II, Math. Programming, Vol. 1, 6–25.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Held, M., Wolfe, P., and Crowder, H.P. (1974), Validation of subgradient optimization, Math. Programming, Vol. 6, 62–88.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Hoffman, A. and Kruskal, J.B. (1956), Integral boundary points of convex polyhedra, in: Linear Inequalities and Related Studies, H. Kuhn and A. Tucker (eds.), Princeton University Press, Princeton, pp. 223–246.Google Scholar
  22. Kalmanson, K. (1975), Edgeconvex circuits and the travelling salesman problem, Canad. J. Math., Vol. 27, 1000–1010.MathSciNetGoogle Scholar
  23. Karp, R.M. (1972), Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York, pp.85–103.Google Scholar
  24. Marcotte, O. and Suri, S. (1991), Fast matching algorithms for points on a polygon, SIAM J. Comput., Vol. 20, 405–422.MathSciNetCrossRefzbMATHGoogle Scholar
  25. Mehlhorn, K. (1984a), Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness, Springer, Berlin.zbMATHGoogle Scholar
  26. Mehlhorn, K. (1984b) Data Structures and Algorithms 3: Multi-dimensional searching and Computational Geometry, Springer, Berlin.zbMATHGoogle Scholar
  27. Minkowski, H. (1896), Geometrie der Zahlen, Teubner, Leipzig.Google Scholar
  28. Monma, C., Paterson, M., Suri, S., and Yao, F. (1990), Computing Euclidean maximum spanning trees, Algorithmica, Vol. 5, 407–419.MathSciNetCrossRefzbMATHGoogle Scholar
  29. Murota, K. (1998), Discrete convex analysis, Mathematical Programming, Vol. 83, 313–371.zbMATHMathSciNetCrossRefGoogle Scholar
  30. Nemhauser, G.L. and Wolsey, L.A. (1988), Integer and Combinatorial Optimization, Wiley, New York.zbMATHGoogle Scholar
  31. Papadimitriou, C.H. (1977), The Euclidean TSP is NP-complete, Theoret. Comp. Sci., Vol. 4, 237–244.zbMATHMathSciNetCrossRefGoogle Scholar
  32. Preparata, F.P. and Shamos, M.I. (1988), Computational Geometry: An Introduction, Springer, Berlin.Google Scholar
  33. Provan, J.S. (1988), Convexity and the Steiner tree problem, Networks, Vol. 18, 55–72.zbMATHMathSciNetGoogle Scholar
  34. Seymour, P.D. (1980), Decomposition of regular matroids, J. Combinatorial Theory Ser. B, Vol. 28, 305–359.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Rainer E. Burkard
    • 1
  1. 1.Institut für Mathematik BGraz University of TechnologyAustria

Personalised recommendations