Algebraic Dynamics of Certain Gamma Function Values

  • J. M. Borwein
  • K. Karamanos
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 77)


We present significant numerical evidence, based on the entropy analysis by lumping of the binary expansion of certain values of the Gamma function, that some of these values correspond to incompressible algorithmic information. In particular, the value Γ(1/5) corresponds to a peak of non-compressibility as anticipated on a priori grounds from number-theoretic considerations. Other fundamental constants are similarly considered.

This work may be viewed as ah invitation for other researchers to apply information theoretic and decision theory techniques in number theory and analysis.


Algebraic dynamics symbolic dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allouche, J.-P. (2000), Algebraic and analytic randomness, in Noise, Oscillators and Algebraic Randomness, M. Planat (Ed.), Lecture Note in Physics, Springer Vol. 550, pp. 345–356.Google Scholar
  2. Bailey, D., Borwein, J.M., Crandall, R., and Pomerance, C. (2004), On the binary expansions of algebraic numbers, J. Number Theory Bordeaux, in press. [CECM Preprint 2003:204]Google Scholar
  3. Bailey, D. H. and Crandall, R. E. (2001), On the random character of fundamental constant expansions, Exp. Math. Vol. 10(2), pp. 175.MathSciNetGoogle Scholar
  4. Bai-Lin, H. (1994), Chaos, World Scientific, Singapore.Google Scholar
  5. Basios, V. (1998), ENTROPA program in C++, (c) Université Libre de Bruxelles.Google Scholar
  6. Borel, E. (1950), Sur les chiffres décimaux de \( \sqrt 2\) et divers problèmes de probabilités en chaîne, C. R. Acad. Sci. Paris Vol. 230, pp. 591–593. Reprinted in: Œuvres d’E. Borel, Vol. 2, pp. 1203–1204. Editions du CNRS: Paris (1972).zbMATHMathSciNetGoogle Scholar
  7. Borwein, J. and Bailey, D. (2003), Mathematics by Experiment: Plausible Reasoning in the 21st Century, AK Peters, Natick Mass.Google Scholar
  8. Borwein, J. M. and Borwein, P. B. (1987), Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, John Wiley, New York.Google Scholar
  9. Borwein, J. M. and Zucker, I. J. (1992), Elliptic integral evaluation of the Gamma function at rational values of small denominator, IMA Journal on Numerical Analysis Vol. 12, pp. 519–526.MathSciNetGoogle Scholar
  10. Briggs, K. (1991), A precise calculation of the Feigenbaum constants, Math. Comp. Vol. 57(195), pp. 435–439. See also Scholar
  11. Briggs, K. M., Dixon, T. W. and Szekeres, G. (1998), Analytic solutions of the Cvitanovic-Feigenbaum and Feigenbaum-Kadanoff-Shenker equations, Int. J. Bifur. Chaos Vol. 8, pp. 347–357.MathSciNetCrossRefGoogle Scholar
  12. Chaitin, G. J.(1994), Randomness and Complexity in Pure Mathematics, Int. J. Bif. Chaos Vol. 4(1), pp. 3–15.zbMATHMathSciNetCrossRefGoogle Scholar
  13. Champernowne, D. G. (1933), The construction of decimals normal in the scale of ten, J. London Math. Soc. Vol. 8, pp. 254–260.zbMATHGoogle Scholar
  14. Cobham, A. (1972), Uniform tag sequences, Math. Systems Theory Vol. 6, pp. 164–192.zbMATHMathSciNetCrossRefGoogle Scholar
  15. Contopoulos, G., Spyrou N. K. and Vlahos L. (Eds.) (1994), Galactic dynamics and N-body Simulations, Springer-Verlag; and references therein.Google Scholar
  16. Contopoulos, G. and Zikides (1980).Google Scholar
  17. Derrida, B, Gervois A. and Pomeau, Y. (1978), Ann. Inst. Henri Poincaré, Section A: Physique Théorique Vol. XXIX(3), pp. 305–356.MathSciNetGoogle Scholar
  18. Ebeling W. and Nicolis, G. (1991), Europhys. Lett. Vol. 14(3), pp. 191–196.Google Scholar
  19. Ebeling W. and Nicolis, G. (1992), Chaos, Solitons & Fractals Vol. 2, pp. 635.MathSciNetCrossRefGoogle Scholar
  20. Feigenbaum, M. (1978), Quantitative Universality for a Class of Nonlinear Transformations, J. Stat. Phys. Vol. 19, pp. 25.zbMATHMathSciNetCrossRefGoogle Scholar
  21. Feigenbaum, M. (1979), The Universal Metric Properties of Nonlinear Transformations, J. Stat. Phys. Vol. 21, pp. 669.zbMATHMathSciNetCrossRefGoogle Scholar
  22. Fraser S. and Kapral, R. (1985), Mass and dimension of Feigenbaum attractors, Phys. Rev. Vol. A31(3), pp. 1687.MathSciNetGoogle Scholar
  23. Grassberger, P. (1986), Int. J. Theor. Phys. Vol. 25(9), pp. 907.zbMATHMathSciNetCrossRefGoogle Scholar
  24. Heggie, D. C. (1985), Celest. Mech. Vol. 35, pp. 357.zbMATHMathSciNetCrossRefGoogle Scholar
  25. Karamanos, K. and Nicolis, G. (1999), Symbolic dynamics and entropy analysis of Feigenbaum limit sets, Chaos, Solitons & Fractals Vol. 10(7), pp. 1135–1150.MathSciNetCrossRefGoogle Scholar
  26. Karamanos, K. (2000), From Symbolic Dynamics to a Digital Approach: Chaos and Transcendence, Proceedings of the Ecole Thématique de CNRS ‘Bruit des Fréquences des Oscillateurs et Dynamique des Nombres Algébriques’, Chapelle des Bois (Jura) 5–10 Avril 1999. ‘Noise, Oscillators and Algebraic Randomness’, M. Planat (Ed.), Lecture Notes in Physics Vol. 550, pp. 357–371, Springer-Verlag.Google Scholar
  27. Karamanos, K. (2001), From symbolic dynamics to a digital approach, Int. J. Bif. Chaos Vol. 11(6), pp. 1683–1694.MathSciNetCrossRefGoogle Scholar
  28. Karamanos, K. (2001), Entropy analysis of automatic sequences revisited: an entropy diagnostic for automaticity, Proceedings of Computing Anticipatory Systems 2000, CASYS2000, AIP Conference Proceedings Vol. 573, D. Dubois (Ed.), pp. 278–284.Google Scholar
  29. Karamanos, K. (2001), Entropy analysis of substitutive sequences revisited, J. Phys. A: Math. Gen. Vol. 34, pp. 9231–9241.zbMATHMathSciNetCrossRefGoogle Scholar
  30. Karamanos K. and Kotsireas, I. (2002), Thorough numerical entropy analysis of some substitutive sequences by lumping, Kybernetes Vol. 31(9/10), pp. 1409–1417.Google Scholar
  31. Karamanos, K. (2004), Characterizing Cantorian sets by entropy-like quantities, to appear in Kybernetes.Google Scholar
  32. Karamanos, K. and Kotsireas, I. (2003), Statistical analysis of the first digits of the binary expansion of Feigenbaum constants α and δ submitted.Google Scholar
  33. Khinchin, A. I. (1957), Mathematical Foundations of Information Theory, Dover, New York.Google Scholar
  34. Metropolis, N., Reitwisner, G. and von Neumann, J. (1950), Statistical Treatment of Values of first 2000 Decimal Digits of π and e Calculated on the ENIAC, Mathematical Tables and Other Aides to Computation Vol. 4, pp. 109–111.CrossRefGoogle Scholar
  35. Metropolis, N., Stein, M. L. and Stein, P. R.(1973), On finite limit sets for transformations on the unit interval, J. Comb. Th. Vol. A 15(1), pp. 25–44.MathSciNetCrossRefGoogle Scholar
  36. Nicolis, G. (1995), Introduction to Nonlinear Science, Cambridge University Press, Cambridge.Google Scholar
  37. Nicolis, J. S. (1991), Chaos and Information Processing, Word Scientific, Singapore.Google Scholar
  38. Nicolis G. and Gaspard, P. (1994), Chaos, Solitons & Fractals Vol. 4(1), pp. 41.MathSciNetCrossRefGoogle Scholar
  39. Schröder, M. (1991), Fractals, Chaos, Power LawsFreeman, New York.Google Scholar
  40. Wagon, S. (1985), Is π normal? Math. Intelligencer Vol. 7, pp. 65–67.zbMATHMathSciNetGoogle Scholar
  41. Waldschmidt M. (2004), personal communication.Google Scholar
  42. Waldschmidt, M. (1998) Introduction to recent results in Transcendental Number Theory, Lectures given at the Workshop and Conference in number theory held in Hong-Kong, June 29–July 3 1993, preprint 074-93, M.S.R.I., Berkeley.Google Scholar
  43. Waldschmidt, M. (1998) Un Demi-Siècle de Transcendence, in Développement des Mathématiques au cours de la seconde moitié du XXème Sièle, Development of Mathematics 2000, Birkhäuser-Verlag.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • J. M. Borwein
    • 1
  • K. Karamanos
    • 2
  1. 1.Computer Science FacultyDalhousie UniversityCanada
  2. 2.Centre for Nonlinear Phenomena and Complex SystemsUniversité Libre de BruxellesBelgium

Personalised recommendations