Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 77))

Abstract

We present significant numerical evidence, based on the entropy analysis by lumping of the binary expansion of certain values of the Gamma function, that some of these values correspond to incompressible algorithmic information. In particular, the value Γ(1/5) corresponds to a peak of non-compressibility as anticipated on a priori grounds from number-theoretic considerations. Other fundamental constants are similarly considered.

This work may be viewed as ah invitation for other researchers to apply information theoretic and decision theory techniques in number theory and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allouche, J.-P. (2000), Algebraic and analytic randomness, in Noise, Oscillators and Algebraic Randomness, M. Planat (Ed.), Lecture Note in Physics, Springer Vol. 550, pp. 345–356.

    Google Scholar 

  • Bailey, D., Borwein, J.M., Crandall, R., and Pomerance, C. (2004), On the binary expansions of algebraic numbers, J. Number Theory Bordeaux, in press. [CECM Preprint 2003:204]

    Google Scholar 

  • Bailey, D. H. and Crandall, R. E. (2001), On the random character of fundamental constant expansions, Exp. Math. Vol. 10(2), pp. 175.

    MathSciNet  Google Scholar 

  • Bai-Lin, H. (1994), Chaos, World Scientific, Singapore.

    Google Scholar 

  • Basios, V. (1998), ENTROPA program in C++, (c) Université Libre de Bruxelles.

    Google Scholar 

  • Borel, E. (1950), Sur les chiffres décimaux de \( \sqrt 2\) et divers problèmes de probabilités en chaîne, C. R. Acad. Sci. Paris Vol. 230, pp. 591–593. Reprinted in: Œuvres d’E. Borel, Vol. 2, pp. 1203–1204. Editions du CNRS: Paris (1972).

    MATH  MathSciNet  Google Scholar 

  • Borwein, J. and Bailey, D. (2003), Mathematics by Experiment: Plausible Reasoning in the 21st Century, AK Peters, Natick Mass.

    Google Scholar 

  • Borwein, J. M. and Borwein, P. B. (1987), Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, John Wiley, New York.

    Google Scholar 

  • Borwein, J. M. and Zucker, I. J. (1992), Elliptic integral evaluation of the Gamma function at rational values of small denominator, IMA Journal on Numerical Analysis Vol. 12, pp. 519–526.

    MathSciNet  Google Scholar 

  • Briggs, K. (1991), A precise calculation of the Feigenbaum constants, Math. Comp. Vol. 57(195), pp. 435–439. See also http://sprott.physics.wisc.edu/phys505/feigen.htm http://sprott.physics.wisc.edu/phys505/feigen.htm http://pauillac.inria.fr/algo/bsolve/constant/fgnbaum/brdhrst.html http://pauillac.inria.fr/algo/bsolve/constant/fgnbaum/brdhrst.html

    Article  MATH  MathSciNet  Google Scholar 

  • Briggs, K. M., Dixon, T. W. and Szekeres, G. (1998), Analytic solutions of the Cvitanovic-Feigenbaum and Feigenbaum-Kadanoff-Shenker equations, Int. J. Bifur. Chaos Vol. 8, pp. 347–357.

    Article  MathSciNet  Google Scholar 

  • Chaitin, G. J.(1994), Randomness and Complexity in Pure Mathematics, Int. J. Bif. Chaos Vol. 4(1), pp. 3–15.

    Article  MATH  MathSciNet  Google Scholar 

  • Champernowne, D. G. (1933), The construction of decimals normal in the scale of ten, J. London Math. Soc. Vol. 8, pp. 254–260.

    MATH  Google Scholar 

  • Cobham, A. (1972), Uniform tag sequences, Math. Systems Theory Vol. 6, pp. 164–192.

    Article  MATH  MathSciNet  Google Scholar 

  • Contopoulos, G., Spyrou N. K. and Vlahos L. (Eds.) (1994), Galactic dynamics and N-body Simulations, Springer-Verlag; and references therein.

    Google Scholar 

  • Contopoulos, G. and Zikides (1980).

    Google Scholar 

  • Derrida, B, Gervois A. and Pomeau, Y. (1978), Ann. Inst. Henri Poincaré, Section A: Physique Théorique Vol. XXIX(3), pp. 305–356.

    MathSciNet  Google Scholar 

  • Ebeling W. and Nicolis, G. (1991), Europhys. Lett. Vol. 14(3), pp. 191–196.

    Google Scholar 

  • Ebeling W. and Nicolis, G. (1992), Chaos, Solitons & Fractals Vol. 2, pp. 635.

    Article  MathSciNet  Google Scholar 

  • Feigenbaum, M. (1978), Quantitative Universality for a Class of Nonlinear Transformations, J. Stat. Phys. Vol. 19, pp. 25.

    Article  MATH  MathSciNet  Google Scholar 

  • Feigenbaum, M. (1979), The Universal Metric Properties of Nonlinear Transformations, J. Stat. Phys. Vol. 21, pp. 669.

    Article  MATH  MathSciNet  Google Scholar 

  • Fraser S. and Kapral, R. (1985), Mass and dimension of Feigenbaum attractors, Phys. Rev. Vol. A31(3), pp. 1687.

    MathSciNet  Google Scholar 

  • Grassberger, P. (1986), Int. J. Theor. Phys. Vol. 25(9), pp. 907.

    Article  MATH  MathSciNet  Google Scholar 

  • Heggie, D. C. (1985), Celest. Mech. Vol. 35, pp. 357.

    Article  MATH  MathSciNet  Google Scholar 

  • Karamanos, K. and Nicolis, G. (1999), Symbolic dynamics and entropy analysis of Feigenbaum limit sets, Chaos, Solitons & Fractals Vol. 10(7), pp. 1135–1150.

    Article  MathSciNet  Google Scholar 

  • Karamanos, K. (2000), From Symbolic Dynamics to a Digital Approach: Chaos and Transcendence, Proceedings of the Ecole Thématique de CNRS ‘Bruit des Fréquences des Oscillateurs et Dynamique des Nombres Algébriques’, Chapelle des Bois (Jura) 5–10 Avril 1999. ‘Noise, Oscillators and Algebraic Randomness’, M. Planat (Ed.), Lecture Notes in Physics Vol. 550, pp. 357–371, Springer-Verlag.

    Google Scholar 

  • Karamanos, K. (2001), From symbolic dynamics to a digital approach, Int. J. Bif. Chaos Vol. 11(6), pp. 1683–1694.

    Article  MathSciNet  Google Scholar 

  • Karamanos, K. (2001), Entropy analysis of automatic sequences revisited: an entropy diagnostic for automaticity, Proceedings of Computing Anticipatory Systems 2000, CASYS2000, AIP Conference Proceedings Vol. 573, D. Dubois (Ed.), pp. 278–284.

    Google Scholar 

  • Karamanos, K. (2001), Entropy analysis of substitutive sequences revisited, J. Phys. A: Math. Gen. Vol. 34, pp. 9231–9241.

    Article  MATH  MathSciNet  Google Scholar 

  • Karamanos K. and Kotsireas, I. (2002), Thorough numerical entropy analysis of some substitutive sequences by lumping, Kybernetes Vol. 31(9/10), pp. 1409–1417.

    Google Scholar 

  • Karamanos, K. (2004), Characterizing Cantorian sets by entropy-like quantities, to appear in Kybernetes.

    Google Scholar 

  • Karamanos, K. and Kotsireas, I. (2003), Statistical analysis of the first digits of the binary expansion of Feigenbaum constants α and δ submitted.

    Google Scholar 

  • Khinchin, A. I. (1957), Mathematical Foundations of Information Theory, Dover, New York.

    Google Scholar 

  • Metropolis, N., Reitwisner, G. and von Neumann, J. (1950), Statistical Treatment of Values of first 2000 Decimal Digits of π and e Calculated on the ENIAC, Mathematical Tables and Other Aides to Computation Vol. 4, pp. 109–111.

    Article  Google Scholar 

  • Metropolis, N., Stein, M. L. and Stein, P. R.(1973), On finite limit sets for transformations on the unit interval, J. Comb. Th. Vol. A 15(1), pp. 25–44.

    Article  MathSciNet  Google Scholar 

  • Nicolis, G. (1995), Introduction to Nonlinear Science, Cambridge University Press, Cambridge.

    Google Scholar 

  • Nicolis, J. S. (1991), Chaos and Information Processing, Word Scientific, Singapore.

    Google Scholar 

  • Nicolis G. and Gaspard, P. (1994), Chaos, Solitons & Fractals Vol. 4(1), pp. 41.

    Article  MathSciNet  Google Scholar 

  • Schröder, M. (1991), Fractals, Chaos, Power LawsFreeman, New York.

    Google Scholar 

  • Wagon, S. (1985), Is π normal? Math. Intelligencer Vol. 7, pp. 65–67.

    MATH  MathSciNet  Google Scholar 

  • Waldschmidt M. (2004), personal communication.

    Google Scholar 

  • Waldschmidt, M. (1998) Introduction to recent results in Transcendental Number Theory, Lectures given at the Workshop and Conference in number theory held in Hong-Kong, June 29–July 3 1993, preprint 074-93, M.S.R.I., Berkeley.

    Google Scholar 

  • Waldschmidt, M. (1998) Un Demi-Siècle de Transcendence, in Développement des Mathématiques au cours de la seconde moitié du XXème Sièle, Development of Mathematics 2000, Birkhäuser-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Borwein, J.M., Karamanos, K. (2005). Algebraic Dynamics of Certain Gamma Function Values. In: Eberhard, A., Hadjisavvas, N., Luc, D.T. (eds) Generalized Convexity, Generalized Monotonicity and Applications. Nonconvex Optimization and Its Applications, vol 77. Springer, Boston, MA. https://doi.org/10.1007/0-387-23639-2_1

Download citation

Publish with us

Policies and ethics