Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 76))

Abstract

This article presents an approach to generalized convex duality theory based on Fenchel-Moreau conjugations; in particular, it discusses quasiconvex conjugation and duality in detail. It also describes the related topic of microeconomics duality and analyzes the monotonicity of demand functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O. Alvarez, E.N. Barron and H. Ishii, Hopf-Lax formulas for semicontinuous data, Indiana Univ. Math. J. 48, pp. 993–1035 (1999).

    Article  MathSciNet  Google Scholar 

  2. Ch. Amara and M. Volle, Compléments de dualité quasi convexe, Ann. Sci. Math. Québec 23, pp. 119–137 (1999).

    MathSciNet  Google Scholar 

  3. M. Andramonov; A.M. Rubinov and B.M. Glover, Cutting angle methods in global optimization, Appl. Math. Lett. 12, pp. 95–100 (1999).

    Article  MathSciNet  Google Scholar 

  4. M. Atteia and A. Elqortobi, Quasi-convex duality, in Optimization and Optimal Control, A. Auslender, W. Oettli and J. Stoer, eds., Springer-Verlag, Berlin, pp. 3–8 (1981).

    Google Scholar 

  5. M. Avriel, W.T. Diewert, S. Schaible and I. Zang, Generalized concavity, Plenum Publishing Corporation (1988).

    Google Scholar 

  6. E.J. Balder, An extension of duality-stability relations to non-convex optimization problems, SIAM J. Control Optimization 15, pp. 329–343 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  7. [7]A.M. Bagirov and A.M. Rubinov, Global minimization of increasing positively homogeneous functions over the unit simplex, Ann. Oper. Res. 98, pp. 171–187 (2000).

    Article  MathSciNet  Google Scholar 

  8. E.N. Barron, R. Jensen and W. Liu, Hopf-Lax formula for u t +H(u,Du) = 0, J. Differ. Eq. 126, pp. 48–61 (1996).

    MathSciNet  Google Scholar 

  9. E.N. Barron, R. Jensen and W. Liu, Hopf-Lax formula for u t +H(u,Du) = 0 II, Comm. P.D.E. 22, pp. 1141–1160 (1997).

    MathSciNet  Google Scholar 

  10. E.N. Barron, R. Jensen and W. Liu, Applications of Hopf-Lax formula for u t +H(u,Du) = 0, SIAM J. Math. Anal. 29, pp. 1022–1039 (1998).

    Article  MathSciNet  Google Scholar 

  11. E.N. Barron and W. Liu, Calculus of variations in L, Applied Math. Opt. 35, pp. 237–243 (1997).

    MathSciNet  Google Scholar 

  12. C. Blackorby, D. Primont and R.R. Russell, Duality, Separability, and Functional Structure, North-Holland Publishing Company (1978).

    Google Scholar 

  13. D.S. Bridges, G.B. Mehta, Representations of preferences orderings, Springer-Verlag (1995).

    Google Scholar 

  14. M. Browning, Dual approaches to utility, in Handbook of Utility Theory. Volume 1. Principles, S. Barberà, P. Hammond and Chr. Seidl, eds., Kluwer Academic Publishers, Dordrecht, pp. 122–144 (1998).

    Google Scholar 

  15. R.J. Cooper and K.R. McLaren, Atemporal, temporal and intertemporal duality in consumer theory, Internat. Econom. Rev. 21, pp. 599–609 (1980).

    MathSciNet  Google Scholar 

  16. R. Cornes, Duality and Modern Economics, Cambridge University Press (1992).

    Google Scholar 

  17. J.-P. Crouzeix, Polaires quasi-convexes et dualité, C.R. Acad. Sci. Paris série A 279, pp. 955–958 (1974).

    MATH  MathSciNet  Google Scholar 

  18. J.-P. Crouzeix, Conjugacy in quasiconvex analysis, in Convex Analysis and Its Applications, A. Auslender, ed., Springer-Verlag, Berlin, pp. 66–99 (1977).

    Google Scholar 

  19. J.-P. Crouzeix, Contribution à l’étude des fonctions quasi-convexes, Thèse d’Etat, Univ. de Clermont II (1977).

    Google Scholar 

  20. J.-P. Crouzeix, Continuity and differentiability properties of quasiconvex functions onn, in Generalized Concavity in Optimization and Economics, S. Schaible and W.T. Ziemba, eds., Academic Press, New York, pp. 109–130 (1981).

    Google Scholar 

  21. J.-P. Crouzeix, A duality framework in quasiconvex programming, in Generalized Concavity in Optimization and Economics, S. Schaible and W.T. Ziemba, eds., Academic Press, New York, pp. 207–225 (1981).

    Google Scholar 

  22. J.-P. Crouzeix, Duality between direct and indirect utility functions. Differentiability properties, J. Math. Econ. 12, pp. 149–165 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  23. J.-P. Crouzeix, J.A. Ferland and S. Schaible, Duality in generalized linear fractional programming, Math. Programming 27, pp. 342–354 (1983).

    MathSciNet  Google Scholar 

  24. A. Daniilidis and N. Hadjisavvas, On the subdifferentials of quasiconvex and pseudoconvex functions and cyclic monotonicity, J. Math. Anal. Appl. 237, pp. 30–42 (1999).

    Article  MathSciNet  Google Scholar 

  25. A. Daniilidis and N. Hadjisavvas, On generalized cyclically monotone operators and proper quasimonotonicity, Optimization 47, pp. 123–135 (2000).

    MathSciNet  Google Scholar 

  26. A. Daniilidis and J.-E. Martínez-Legaz, Characterizations of evenly convex sets and evenly quasiconvex functions, J. Math. Anal. Appl. 273, pp. 58–66 (2002).

    Article  MathSciNet  Google Scholar 

  27. [27]R. Deumlich and K.-H. Elster, Φ-conjugation and nonconvex optimization. A survey. Part I, Math. Operationsforsch. Stat. Ser. Optim. 14, pp. 125–149 (1980).

    MathSciNet  Google Scholar 

  28. R. Deumlich and K.-H. Elster, Φ-conjugation and nonconvex optimization. A survey. Part II, Math. Operationsforsch. Stat. Ser. Optim. 15, pp. 499–515 (1980).

    MathSciNet  Google Scholar 

  29. R. Deumlich and K.-H. Elster, Φ-conjugation and nonconvex optimization. A survey. Part III, Optimization 16, pp. 789–803 (1980).

    MathSciNet  Google Scholar 

  30. W.E. Diewert, Generalized concavity and economics, in Generalized Concavity in Optimization and Economics, S. Schaible and W.T. Ziemba, eds., Academic Press, New York, pp. 511–541 (1981).

    Google Scholar 

  31. [31]W.E. Diewert, Duality approaches to microeconomics theory, in Handbook of Mathematical Economics vol. 2, K.J. Arrow and M.D. Intriligator, eds., North-Holland Publishing Company, Amsterdam, pp. 535–599 (1982).

    Google Scholar 

  32. S. Dolecki and S. Kurcyusz, On Φ-convexity in extremal problems, SIAM J. Control Optimization 16, pp. 277–300 (1978).

    Article  MathSciNet  Google Scholar 

  33. R.R. Egudo, Efficiency and generalized convex duality for multiobjective programs, J. Math. Anal. Appl. 138, pp. 84–94 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  34. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland Publishing Company (1976).

    Google Scholar 

  35. A. Elqortobi, Conjugaison quasi-convexe des fonctionnelles positives, Ann. Sci. Math. Québec 17, pp. 155–167 (1993).

    MATH  MathSciNet  Google Scholar 

  36. K.-H. Elster and R. Nehse, Zur Theorie der Polarfunktionale, Math. Oper. Stat. 5, pp. 3–21 (1974).

    MathSciNet  Google Scholar 

  37. [37]K.-H. Elster and A. Wolf, Recent results on generalized conjugate functions, in Trends in Mathematical Optimization, K.-H. Hoffmann, J.-B. Hiriart-Urruty, C. Lemarechal and J. Zowe, eds., Birkhauser Verlag, Basel, pp. 67–78 (1988).

    Google Scholar 

  38. J.J.M. Evers and H. van Maaren, Duality principles in mathematics and their relations to conjugate functions, Nieuw Arch. Wiskd. IV. Ser. 3, pp. 23–68 (1985).

    Google Scholar 

  39. R. Färe and D. Primont, Multi-Output Production and Duality: theory and applications, Kluwer-Nijhoff Publishing (1995).

    Google Scholar 

  40. W. Fenchel, A remark on convex sets and polarity, Meddel. Lunds Univ. Mat. Sem. Suppl.-band M. Riesz, pp. 82–89 (1952).

    Google Scholar 

  41. F. Flores-Bazán and J.E. Martínez-Legaz, Simplified global optimality conditions in generalized conjugation theory, in Generalized Convexity, Generalized Monotonicity, J.-P. Crouzeix, J.-E. Martínez-Legaz and M. Volle, eds., Kluwer Academic Publishers, Dordrecht, pp. 305–329 (1998).

    Google Scholar 

  42. J.G.B. Frenk, D.M.L. Dias and J. Gromicho, Duality theory for convex/quasiconvex functions and its application to optimization, in Generalized Convexity, S. Komlosi, T. Rapcsák and S. Schaible, eds., Springer-Verlag, Berlin, pp. 153–170 (1994).

    Google Scholar 

  43. S. Fuchs-Seliger, A note on duality in consumer theory, Econom. Theory 13, pp. 239–246 (1999).

    MATH  MathSciNet  Google Scholar 

  44. W. Gangbo and R.J. McCann, The geometry of optimal transportation, Acta Math. 177, pp. 113–161 (1996).

    MathSciNet  Google Scholar 

  45. J. Getán, J.-E. Martínez-Legaz and I. Singer, (*,s)-dualities, J. Math. Sci. (N. Y.) 115, pp. 2506–2541 (2003).

    MathSciNet  Google Scholar 

  46. F. Glover, A multiphase-dual algorithm for the zero-one integer programming problem, Oper. Res. 13, pp. 879–919 (1965).

    MATH  MathSciNet  Google Scholar 

  47. F. Glover, Surrogate constraints, Oper. Res. 16, pp. 741–749 (1968).

    MATH  MathSciNet  Google Scholar 

  48. H.J. Greenberg and W.P. Pierskalla, Surrogate mathematical programming, Oper. Res. 18, pp. 924–939 (1970).

    MathSciNet  Google Scholar 

  49. H.J. Greenberg and W.P. Pierskalla, Quasiconjugate function and surrogate duality, Cahiers du Centre d’Etude de Recherche Oper. 15, pp. 437–448 (1973).

    MathSciNet  Google Scholar 

  50. W. Hildenbrand, Market Demand: Theory and Empirical Evidence, Princeton University Press (1994).

    Google Scholar 

  51. H.S. Houthakker, Revealed preference and the utility function, Economica N.S. 17, pp. 159–170 (1950).

    MathSciNet  Google Scholar 

  52. Y. Kannai, A characterization of monotone individual demand functions, J. Math. Econ. 18, pp. 87–94 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  53. D.S. Kim, G.M. Lee and H. Kuk, Duality for multiobjective fractional variational problems with generalized invexity, Nihonkai Math. J. 9, pp. 17–25 (1998).

    MathSciNet  Google Scholar 

  54. D.S. Kim and S. Schaible, Optimality and duality for invex nonsmooth multiobjective programming problems, Working Paper 02-06, A. Gary Anderson Graduate School of Management Univ. of California Riverside (2002).

    Google Scholar 

  55. V. Krishna and H. Sonnenschein, Duality in consumer theory, in Preferences, Uncertainty and Optimality, J. Chipman, D. McFadden and M.K. Richter, eds., Westview Press, pp. 44–55 (1990).

    Google Scholar 

  56. S.S. Kutateladze and A.M. Rubinov, Minkowski duality and its applications, Russian Math. Surveys 27, pp. 137–192 (1972).

    MathSciNet  Google Scholar 

  57. B. Lemaire and M. Volle, Duality in DC programming, in Generalized Convexity, Generalized Monotonicity, J.-P. Crouzeix, J.-E. Martínez-Legaz and M. Volle, eds., Kluwer Academic Publishers, Dordrecht, pp. 331–345 (1998).

    Google Scholar 

  58. B. Lemaire and M. Volle, A general duality scheme for nonconvex minimization problems with a strict inequality constraint, J. Global Opt. 13, pp. 317–327 (1998).

    MathSciNet  Google Scholar 

  59. V. Levin, Quasi-convex functions and quasi-monotone operators, J. Convex Anal. 2, pp. 167–172 (1995).

    MATH  MathSciNet  Google Scholar 

  60. V. Levin, Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem, Set-Valued Analysis 7, pp. 7–32 (1999).

    MathSciNet  Google Scholar 

  61. P.O. Lindberg, A generalization of Fenchel conjugation giving generalized lagrangians and symmetric nonconvex duality, in Survey of Mathematical Programming 1, A. Prékopa, ed., Akad. Kiado and North-Holland Publishing Company, Budapest and Amsterdam, pp. 249–268 (1979).

    Google Scholar 

  62. P.O. Lindberg, On quasiconvex duality, Preprint, Dept. Math. Royal Inst. Technology Stockholm (1981).

    Google Scholar 

  63. J.T. Little, Indirect preferences, J. Econom. Theory 20, pp. 182–193 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  64. D.G. Luenberger, Quasi-convex programming, SIAM J. Appl. Math. 16, pp. 1090–1095 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  65. J.-E. Martínez-Legaz, Conjugación asociada a un grafo, Acta Salmant. Cienc. 46, pp. 837–839 (1982).

    Google Scholar 

  66. J.-E. Martínez-Legaz, A generalized concept of conjugation methods, in Optimization, Theory and Algorithms, J.-B. Hiriart-Urruty, W. Oettli and J. Stoer, eds., Marcel Dekker, New York, pp. 45–49 (1983).

    Google Scholar 

  67. J.-E. Martínez-Legaz, Exact quasiconvex conjugation, Z. Oper. Res. Ser. A 27, pp. 257–266 (1983).

    MATH  MathSciNet  Google Scholar 

  68. J.-E. Martínez-Legaz, Lexicographical order, inequality systems and optimization, in System Modelling and Optimization, P. Thoft-Christensen, ed., Springer-Verlag, Berlin, pp. 203–212 (1984).

    Google Scholar 

  69. J.-E. Martínez-Legaz, Some new results on exact quasiconvex duality, Methods Oper. Res. 49, pp. 47–62 (1985).

    MATH  Google Scholar 

  70. J.-E. Martínez-Legaz, Quasiconvex duality theory by generalized conjugation methods, Optimization 19, pp. 603–652 (1988).

    MATH  MathSciNet  Google Scholar 

  71. J.-E. Martínez-Legaz, On lower subdifferentiable functions, in Trends in Mathematical Optimization, K.-H. Hoffmann, J.-B. Hiriart-Urruty, C. Lemarechal and J. Zowe, eds., Birkhauser Verlag, Basel, pp. 197–232 (1988).

    Google Scholar 

  72. J.-E. Martínez-Legaz, Generalized conjugation and related topics, in Generalized convexity and fractional programming with economic applicationsa, A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible, eds., Springer-Verlag, Berlin, pp. 168–197 (1990).

    Google Scholar 

  73. J.-E. Martínez-Legaz, Duality between direct and indirect utility functions under minimal hypothesis, J. Math. Econ. 20, pp. 199–209 (1991).

    MATH  Google Scholar 

  74. J.-E. Martínez-Legaz, Axiomatic characterizations of the duality correspondence in consumer theory. J. Math. Econ. 22, pp. 509–522 (1993).

    MATH  Google Scholar 

  75. [75]J.-E. Martínez-Legaz, Fenchel duality and related properties in generalized conjugation theory, Southeast Asian Bull. Math. 19, pp. 99–106 (1995).

    MATH  Google Scholar 

  76. J.-E. Martínez-Legaz, Dual representation of cooperative games based on Fenchel-Moreau conjugation, Optimization 36, pp. 291–319 (1996).

    MATH  MathSciNet  Google Scholar 

  77. J.-E. Martínez-Legaz, Characterization of R-evenly quasiconvex functions, J. Optim. Th. Appl. 95, pp. 717–722 (1997).

    Google Scholar 

  78. J.-E. Martínez-Legaz and J.K.-H. Quah, A contribution to duality theory, applied to the measurement of risk aversion, submitted.

    Google Scholar 

  79. J.-E. Martínez-Legaz and J.K.-H. Quah, Monotonic demand: direct and indirect approaches, in preparation.

    Google Scholar 

  80. J.-E. Martínez-Legaz and S. Romano-Rodríguez, a-lower subdifferentiable functions, SIAM J. Optim. 4, pp. 800–825 (1993).

    Google Scholar 

  81. J.-E. Martínez-Legaz, A.M. Rubinov and S. Schaible, Increasing quasiconcave co-radiant functions with applications in mathematical economics, Math. Methods Oper. Res. (to appear).

    Google Scholar 

  82. J.-E. Martínez-Legaz and M.S. Santos, Duality between direct and indirect preferences, Econom. Theory 3, 335–351 (1993).

    MathSciNet  Google Scholar 

  83. J.-E. Martínez-Legaz, and M.S. Santos, On expenditure functions, J. Math. Econ. 25, pp. 143–163 (1996).

    Google Scholar 

  84. J.-E. Martínez-Legaz and I. Singer, Surrogate Duality for Vector Optimization, Numerical Functional Analysis and Optimization 9, pp. 547–568 (1987).

    MathSciNet  Google Scholar 

  85. J.-E. Martínez-Legaz and I. Singer, Dualities between complete lattices, Optimization 21, pp. 481–508 (1990).

    MathSciNet  Google Scholar 

  86. J.-E. Martínez-Legaz and I. Singer, V-dualities and ⊥-dualities, Optimization 22, pp. 483–511 (1991).

    MathSciNet  Google Scholar 

  87. J.-E. Martínez-Legaz and I. Singer, *-dualities, Optimization 30, pp. 295–315 (1994).

    MathSciNet  Google Scholar 

  88. J.-E. Martínez-Legaz and I. Singer, Subdifferentials with respect to dualities, ZOR-Math. Methods Oper. Res. 42, pp. 109–125 (1995).

    MathSciNet  Google Scholar 

  89. J.-E. Martínez-Legaz and I. Singer, Dualities associated to binary operations on ℝ J. Convex Anal. 2, pp. 185–209 (1995).

    MathSciNet  Google Scholar 

  90. J.-E. Martínez-Legaz and I. Singer, An extension of D.C. duality theory, with an appendix on *-subdifferentials, Optimization 42, pp. 9–37 (1997).

    MathSciNet  Google Scholar 

  91. J.-E. Martínez-Legaz, and I. Singer, On conjugations for functions with values in extensions of ordered groups, Positivity 1, pp. 193–218 (1997).

    MathSciNet  Google Scholar 

  92. J.-E. Martínez-Legaz, and I. Singer, On Φ-convexity of convex functions, Linear Algebra Appl. 278, pp. 163–181 (1998).

    MathSciNet  Google Scholar 

  93. J.-E. Martínez-Legaz, and M. Volle, Duality in D. C. programming: The case of several D. C. constraints, J. Math. Anal. Appl. 237, pp. 657–671 (1999).

    MathSciNet  Google Scholar 

  94. J.-E. Martínez-Legaz, and M. Volle, Duality for D. C. optimization problems over compact sets, in Optimization Theory; Recent Developments from Matrahaza, F. Giannessi, P. Pardalos and T. Rapcsák, eds., Kluwer Academic Publishers, Dordrecht, pp. 139–146 (2001).

    Google Scholar 

  95. A. Mas-Colell, The Theory of General Economic Equilibrium. A Differentiable Approach, Cambridge University Press (1989).

    Google Scholar 

  96. A. Mas-Colell, M.D. Whinston and J.R. Green, Microeconomic Theory, Oxford University Press (1995).

    Google Scholar 

  97. M.-L. Mazure and M. Volle, Équations inf-convolutives et conjugaison de Moreau-Fenchel, Ann. Fac. Sci. Toulouse, V. Sér., Math. 12, pp. 103–126 (1991).

    MathSciNet  Google Scholar 

  98. L. McKenzie, Demand theory without a utility index, Review of Economic Studies 24, p. 185–189 (1956-57).

    Google Scholar 

  99. J.C. Milleron, Unicité et stabilité de l’équilibre en économie de distribution, Séminaire d’Econometrie Roy-Malinvaud (1974).

    Google Scholar 

  100. S.K. Mishra, Second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res. 127, pp. 507–518 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  101. L.G. Mitjushin and V.M. Polterovich, Monotonicity criterion for demand function, Ekonom. Mat. Metody 14, pp. 122–128 (1978).

    Google Scholar 

  102. J.-J. Moreau, Inf-convolution, sous-additivité, convexité des fonctions numériques, J. Math. Pures et Appl. 49, pp. 109–154 (1970).

    MATH  MathSciNet  Google Scholar 

  103. R.N. Mukherjee, Generalized convex duality for multiobjective fractional programs, J. Math. Anal. Appl. 162, pp. 309–316 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  104. W. Oettli and D. Schläger, Conjugate functions for convex and nonconvex duality, J. Global Optim. 13, pp. 337–347 (1998).

    Article  MathSciNet  Google Scholar 

  105. D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization. Convex Analysis without Linearity, Kluwer Academic Publishers (1998).

    Google Scholar 

  106. U. Passy and E.Z. Prisman, Conjugacy in quasi-convex programming, Math. Programming 30, pp. 121–146 (1984).

    MathSciNet  Google Scholar 

  107. U. Passy and E.Z. Prisman, A convexlike duality scheme for quasiconvex programs, Math. Programming 32, pp. 278–300 (1985).

    Article  MathSciNet  Google Scholar 

  108. R.B. Patel, Duality and sufficiency for fractional control problems with invexity, Nonlinear Anal. 35, pp. 541–548 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  109. J.P. Penot, Duality for radiant and shady programs, Acta Math. Vietnam. 22, pp. 541–566 (1997).

    MATH  MathSciNet  Google Scholar 

  110. J.P. Penot, What is quasiconvex analysis?, Optimization 47, pp. 35–110 (2000).

    MATH  MathSciNet  Google Scholar 

  111. J.P. Penot, Duality for anticonvex programs J. Global Optim. 19, pp. 163–182 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  112. J.P. Penot and M. Volle, Dualité de Fenchel et quasi-convexité, C.R. Acad. Sc. Paris série I 304, pp. 269–272 (1987).

    MathSciNet  Google Scholar 

  113. J.P. Penot and M. Volle, Another duality scheme for quasiconvex problems, in Trends in Mathematical Optimization, K.-H. Hoffmann, J.B. Hiriart-Urruty, C. Lemarechal and J. Zowe, eds., Bickhauser Verlag, Basel, pp. 259–275 (1988)

    Google Scholar 

  114. J.P. Penot and M. Volle, On quasi-convex duality, Math. Operat. Research 15, pp. 597–625 (1990).

    MathSciNet  Google Scholar 

  115. J.P. Penot and M. Volle, Explicit solutions to Hamilton-Jacobi equations under mild continuity and convexity assumptions, J. Nonlinear Convex Anal. 1, pp. 177–199 (2000).

    MathSciNet  Google Scholar 

  116. J.P. Penot and M. Volle, Convexity and generalized convexity methods for the study of Hamilton-Jacobi equations, in Generalized Convexity and Generalized Monotonicity, N. Hadjisavvas, J.-E. Martínez-Legaz and J.P. Penot, eds., Springer-Verlag, Berlin, pp. 294–316 (2001).

    Google Scholar 

  117. E.L. Peterson, Geometric Programming, SIAM Review 18, pp. 1–52 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  118. R. Pini and C. Singh, A survey of recent advances in generalized convexity with applications to duality theory and optimality conditions (1985–1995), Optimization 39, pp. 311–360 (1997).

    MathSciNet  Google Scholar 

  119. J.K.-H. Quah, The monotonicity of individual and market demand, Econometrica 68, pp. 911–930 (2000).

    Article  MATH  Google Scholar 

  120. M.K. Richter, Duality and rationality, J. Econom. Theory 20, pp. 131–181 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  121. R.T. Rockafellar, Convex Analysis, Princeton University Press (1970).

    Google Scholar 

  122. R.T. Rockafellar, Conjugate duality and optimization, SIAM (1974).

    Google Scholar 

  123. R.T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control Optimization 12, pp. 268–285 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  124. A.M. Rubinov, Abstract convexity and global optimization, Kluwer Academic Publishers (2000).

    Google Scholar 

  125. A.M. Rubinov and M. Andramonov, Lipschitz programming via increasing convex-along-rays functions, Optim. Methods Softw. 10, pp. 763–781 (1999).

    MathSciNet  Google Scholar 

  126. A.M. Rubinov and B.M. Glover, On generalized quasiconvex conjugation, in Recent Developments in Optimization Theory and Nonlinear Analysis, Y. Censor and S. Reich, eds., American Mathematical Society Providence, pp. 199–216 (1997).

    Google Scholar 

  127. A.M. Rubinov and B.M. Glover, Quasiconvexity via two steps functions, in Generalized Convexity, Generalized Monotonicity, J.-P. Crouzeix, J.-E. Martínez-Legaz and M. Volle, eds., Kluwer Academic Publishers, Dordrecht, pp. 159–183 (1998).

    Google Scholar 

  128. A.M. Rubinov and B.M. Glover, Increasing convex-along-rays functions with applications to global optimization, J. Optim. Th. Appl. 102, pp. 615–642 (1999).

    MathSciNet  Google Scholar 

  129. A.M. Rubinov and B. Simsek, Conjugate quasiconvex nonnegative functions, Optimization 35, pp. 1–22 (1995).

    MathSciNet  Google Scholar 

  130. A.M. Rubinov and B. Simsek, Dual problems of quasiconvex maximization, Bull. Aust. Math. Soc. 51, pp. 139–144 (1995).

    MathSciNet  Google Scholar 

  131. P.A. Samuelson, A note on the pure theory of consumer’s behavior, Economica N.S. 5, pp. 61–71 (1938).

    Google Scholar 

  132. P.A. Samuelson, A note on the pure theory of consumer’s behavior: an addendum, Economica N.S. 5, pp. 353–354 (1938).

    Google Scholar 

  133. P. Scapparone, The indirect preference relation, Riv. Mat. Sci. Econom. Commerc. 48, pp. 331–351 (2001).

    Google Scholar 

  134. C.H. Scott and T.R. Jefferson, Conjugate duality in generalized fractional programming, J. Optim. Th. Appl. 60, pp. 475–483 (1989).

    MathSciNet  Google Scholar 

  135. C.H. Scott and T.R. Jefferson, Duality for a nonconvex sum of ratios, J. Optim. Th. Appl. 98, pp. 151–159 (1998).

    MathSciNet  Google Scholar 

  136. Shephard, R.W., Theory of cost and production functions, Princeton University Press (1970).

    Google Scholar 

  137. I. Singer, A Fenchel-Rockafellar type duality theorem for maximization, Bull. Aust. Math. Soc. 20, pp. 193–198 (1979).

    MATH  Google Scholar 

  138. I. Singer, seudo-conjugate functionals and pseudo-duality, in Mathematical Methods in Operations Research, A. Dontchev, ed., Bulgarian Academy of Sciences, Sofia, pp. 115–134 (1981).

    Google Scholar 

  139. I. Singer, Generalized convexity, functional hulls and applications to conjugate duality in optimization, in Selected Topics in Operations Research and Mathematical Economics, G. Hammer and D. Pallaschke, eds., Springer-Verlag, Berlin, pp. 49–79 (1984).

    Google Scholar 

  140. I. Singer, Conjugation operators, in Selected Topics in Operations Research and Mathematical Economics, G. Hammer and D. Pallaschke, eds., Springer-Verlag, Berlin, pp. 80–97 (1984).

    Google Scholar 

  141. I. Singer, Surrogate dual problems and surrogate Lagrangians, J. Math. Anal. Appl. 98, pp. 31–71 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  142. I. Singer, Some relations between dualities, polarities, coupling functions and conjugations, J. Math. Anal. Appl. 115, pp. 1–22 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  143. I. Singer, A general theory of dual optimization problems, J. Math. Anal. Appl. 116, pp. 77–130 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  144. I. Singer, Generalizations of convex supremization duality, in Nonlinear and Convex Analysis, B.-L. Lin and S. Simons, eds., Marcel Dekker, New York, pp. 253–270 (1987).

    Google Scholar 

  145. I. Singer, Infimal generators and dualities between complete lattices, Ann. Mat. Pura Appl. IV. Ser. 148, pp. 289–352 (1987).

    Article  MATH  Google Scholar 

  146. I. Singer, A general theory of dual optimization problems. II. On the perturbational dual problem corresponding to an unperturbational dual problem, Z. Oper. Res. 33 (1989), 241–258.

    MATH  MathSciNet  Google Scholar 

  147. I. Singer, Some further relations between unperturbational and perturbational dual optimization problems, Optimization 22, pp. 317–339 (1991).

    MATH  MathSciNet  Google Scholar 

  148. I. Singer, Abstract Convex Analysis, Wiley (1997).

    Google Scholar 

  149. I. Singer, Duality in quasi-convex supremization and reverse convex infimization via abstract convex analysis, and applications to approximation, Optimization 45, pp. 255–307 (1999).

    MATH  MathSciNet  Google Scholar 

  150. I. Singer, Dual representations of hulls for functions satisfying \(f(0) = inf\;f(X\backslash \{ 0\} )\), Optimization 45, pp. 309–341 (1999).

    MATH  MathSciNet  Google Scholar 

  151. I. Singer, Some relations between linear mappings and conjugations in idempotent analysis, J. Math. Sci. (N. Y.) 115, pp. 2610–2630 (2003).

    MATH  MathSciNet  Google Scholar 

  152. P.D. Tao and S. El Bernoussi, Duality in D.C. (difference of convex functions). Optimization. Subgradient methods, in Trends in Mathematical Optimization, K.-H. Hoffmann, J.-B. Hiriart-Urruty, C. Lemarechal and J. Zowe, eds., Birkhauser Verlag, Basel, pp. 277–293 (1988).

    Google Scholar 

  153. P.T. Thach, Quasiconjugates of functions, duality relationships between quasiconvex minimization under a reverse convex constraint and quasiconvex maximization under a convex constraint and applications, J. Math. Anal. Appl. 159, pp. 299–322 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  154. P.T. Thach, Global optimality criterion and a duality with a zero gap in nonconvex optimization, SIAM J. Math. Anal. 24, pp. 1537–1556 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  155. P.T. Thach, A nonconvex duality with zero gap and applications, SIAM J. Optim. 4, pp. 44–64 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  156. P.T. Thach, Diewert-Crouzeix conjugation for general quasiconvex duality and applications, J. Optim. Th. Appl. 86, pp. 719–743 (1995).

    MATH  MathSciNet  Google Scholar 

  157. P.T. Thach and M. Kojima, A generalized convexity and variational inequality for quasi-convex minimization, SIAM J. Optim. 6, pp. 212–226 (1996).

    Article  MathSciNet  Google Scholar 

  158. W.A. Thompson and D.W. Parke, Some properties of generalized concave functions, Oper. Res. 21, pp. 305–313 (1973).

    MathSciNet  Google Scholar 

  159. J.F. Toland, Duality in nonconvex optimization, J. Math. Anal. Appl. 66, pp. 399–415 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  160. S. Traoré and M. Volle, Quasi-convex conjugation and Mosco convergence, Richerche di Mat. 44, pp. 369–388 (1995).

    Google Scholar 

  161. M. Volle, Regularizations in abelian complete ordered groups, J. Math. Anal. Appl. 84, pp. 418–430 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  162. M. Volle, Conjugaison par tranches, Ann. Mat. Pura Appl. 139, pp. 279–312 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  163. M. Volle, Contributions à la dualité en optimisation et à l’épiconvergence, Thesis, Univ. de Pau (1986).

    Google Scholar 

  164. M. Volle, Conjugaison par tranches et dualité de Toland, Optimization 18, pp. 633–642 (1987).

    MATH  MathSciNet  Google Scholar 

  165. [165]M. Volle, Concave duality: application to problems dealing with difference of functions, Math. Programming 41, pp. 261–278 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  166. M. Volle, Conditions initiales quasiconvexes dans les équations de Hamilton-Jacobi, C.R. Acad. Sci. Paris série I 325, pp. 167–170 (1997).

    MATH  MathSciNet  Google Scholar 

  167. M. Volle, Quasiconvex duality for the max of two functions, in Recent Advances in Optimization, P. Gritzmann, R. Horst, E. Sachs and R. Tichatschke, eds., Springer-Verlag, Berlin, pp. 365–379 (1997).

    Google Scholar 

  168. M. Volle, A formula on the conjugate of the max of a convex function and a concave function, J. Math. Anal. Appl. 220, 313–321 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  169. M. Volle, Duality for the level sum of quasiconvex functions and applications, ESAIM: Control, Optimisation and Calculus of Variations 3, pp. 329–343 (1998), available at http://www.edpsciences.org/articles/cocv/abs/1998/01/cocvEng-Vol3.15.html.

    MATH  MathSciNet  Google Scholar 

  170. X.M. Yang, Generalized convex duality for multiobjective fractional programs, Opsearch 31, pp. 155–163 (1994).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Martínez-Legaz, J.E. (2005). Generalized Convex Duality and its Economic Applicatons. In: Hadjisavvas, N., Komlósi, S., Schaible, S. (eds) Handbook of Generalized Convexity and Generalized Monotonicity. Nonconvex Optimization and Its Applications, vol 76. Springer, New York, NY. https://doi.org/10.1007/0-387-23393-8_6

Download citation

Publish with us

Policies and ethics