Skip to main content

Introduction to Convex and Quasiconvex Analysis

  • Chapter

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 76))

Abstract

In the first chapter of this book the basic results within convex and quasiconvex analysis are presented. In Section 2 we consider in detail the algebraic and topological properties of convex sets within ℝn together with their primal and dual representations. In Section 3 we apply the results for convex sets to convex and quasiconvex functions and show how these results can be used to give primal and dual representations of the functions considered in this field. As such, most of the results are well known with the exception of Subsection 3.4 dealing with dual representations of quasiconvex functions. In Section 3 we consider applications of convex analysis to noncooperative game and minimax theory, Lagrangian duality in optimization and the properties of positively homogeneous evenly quasiconvex functions. Among these result an elementary proof of the well-known Sion’s minimax theorem concerning quasiconvex-quasiconcave bifunctions is presented, thereby avoiding the less elementary fixed point arguments. Most of the results are proved in detail and the authors have tried to make these proofs as transparent as possible. Remember that convex analysis deals with the study of convex cones and convex sets and these objects are generalizations of linear subspaces and affine sets, thereby extending the field of linear algebra. Although some of the proofs are technical, it is possible to give a clear geometrical interpretation of the main ideas of convex analysis. Finally in Section 5 we list a short and probably incomplete overview on the history of convex and quasiconvex analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubin, J.B., Optima and Equilibria (An introduction to nonlinear analysis), Graduate Texts in Mathematics, v. 140, Springer Verlag, Berlin, 1993.

    Google Scholar 

  2. Avriel, M., Diewert, W.E., Schaible, S. and I. Zang, Generalized Concavity, in Mathematical Concepts and Methods in Science and Engineering, v. 36, Plenum Press, New York, 1988.

    Google Scholar 

  3. Bazaara, M.S., Sherali, H.D. and C.N. Shetty, Nonlinear Programming (Theory and Applications), Wiley, New York, 1993.

    Google Scholar 

  4. Bazaara, M.S., Jarvis, J.J. and H.D. Sherali, Linear Programming and Network Flows (Second Edition), Wiley, New York, 1990.

    Google Scholar 

  5. Bonnesen, T. and W. Fenchel, Theorie der konvexen Körper, Springer Verlag, Berlin, 1974.

    Google Scholar 

  6. Breckner, W.W. and G. Kassay, A systematization of convexity concepts for sets and functions, Journal of Convex Analysis, 4, 1997, 1–19.

    MathSciNet  Google Scholar 

  7. Brunn, H., Über Ovale und Eiflächen, Inauguraldissertation, University of München, 1887.

    Google Scholar 

  8. Brunn, H., Über Kurven ohne Wendepunkte, Habilitationsschrift, University of München, 1889.

    Google Scholar 

  9. Brunn, H., Zur Theorie der Eigebiete, Arch. Math. Phys. Ser. 3, 17, 1910, 289–300.

    Google Scholar 

  10. Choquet, G., Lectures on Analysis: Volume 2 Representation Theory, in Mathematics Lecture Note Series, W.A. Benjamin, London, 1976.

    Google Scholar 

  11. Crouzeix, J.-P., Continuity and differentiability of quasiconvex functions, Chapter 3 in this volume.

    Google Scholar 

  12. Crouzeix, J.-P., Contributions a l’ étude des fonctions quasiconvexes, Université de Clermond-Ferrand 2, France, 1977.

    Google Scholar 

  13. Crouzeix, J.-P., Conditions for convexity of quasiconvex functions, Mathematics of Operations Research, 5, 1980, 120–125.

    MATH  MathSciNet  Google Scholar 

  14. Crouzeix, J.-P., A duality framework in quasiconvex programming, in Generalized Concavity in Optimization and Economics, Schaible, S. and W.T. Ziemba, eds., Academic Press, 1981, 207–225.

    Google Scholar 

  15. Crouzeix, J.-P., Continuity and differentiability properties of quasiconvex functions on ℝn, in Generalized Concavity in Optimization and Economics, Schaible, S. and W.T. Ziemba, eds., Academic Press, 1981, 109–130.

    Google Scholar 

  16. De Finetti, B., Sulle stratificazioni convesse, Ann. Mat. Pura Appl., [4]30, 1949, 173–183.

    Google Scholar 

  17. Dudley, R.M., Real Analysis and Probability, Wadsworth and Brooks/Cole, Pacific Grove, 1989.

    Google Scholar 

  18. Edwards, R.E., Functional Analysis: Theory and Applications, Holt, Rinehart and Winston, Chicago, 1965.

    Google Scholar 

  19. Faigle, U., Kern, W. and G. Still, Algorithmic Principles of Mathematical Programming, in Kluwer texts in Mathematical Sciences, v. 24, Kluwer Academic Publishers, Dordrecht, 2002.

    Google Scholar 

  20. Farkas, J., Uber die Theorie der einfache Ungleichungen, Journal für die Reine und Angewandte Mathematik, 124, 1901, 1–27.

    MATH  Google Scholar 

  21. Fenchel, W., On conjugate convex functions, Canadian Journal of Mathematics, 1, 1949, 73–77.

    MATH  MathSciNet  Google Scholar 

  22. Fenchel, W., Convex Cones, Sets and Functions, Lecture notes, Princeton University, 1951.

    Google Scholar 

  23. Fenchel, W., A remark on convex sets and polarity, Communication Seminar on Mathematics, University of Lund supplementary volume, 1952, 22–89.

    Google Scholar 

  24. Frenk, J.B.G and G. Kassay, On classes of generalized convex functions, Gordan-Farkas type theorems and Lagrangian duality, Journal of Optimization Theory and Applications, [2]102, 1999, 315–343.

    MathSciNet  Google Scholar 

  25. Frenk, J.B.G. and G. Kassay, Lagrangian duality and cone convexlike functions, Econometric Institute, Erasmus University Rotterdam, Tech. Rep. 2000-27/A, 2000.

    Google Scholar 

  26. Frenk, J.B.G. and G. Kassay, Minimax results and finite dimensional separation, Journal of Optimization Theory and Applications, [2]113, 2002, 409–421.

    MathSciNet  Google Scholar 

  27. Frenk, J.B.G., Dias, D.M.L. and J. Gromicho, Duality theory for convex and quasiconvex Functions and its application to optimization, in Generalized Convexity: Proceedings Pecs, Hungary, 1992, Komlósi, S., Rapcsák, T. and S. Schaible, eds., Lecture notes in Economics and Mathematics, 405, 1994, 153–171.

    Google Scholar 

  28. Frenk, J.B.G., Kassay, G. and J. Kolumbán, On equivalent results in minimax theory, European Journal of Operational Research 157, 2004, 46–58.

    Article  MathSciNet  Google Scholar 

  29. Frenk, J.B.G., Protassov, V. and G. Kassay, On Borel probability measures and noncooperative game theory, Report Series Econometric Institute, Erasmus University Rotterdam, Tech. Rep. EI-2002-32, 2002.

    Google Scholar 

  30. Giorgio, G. and S. Komlósi, Dini derivatives in optimization-Part I, Rivista di Matematica per le Scienze Economiche e Sociali, [1]15, 1992, 3–30.

    Google Scholar 

  31. Glover, F., Surrogate constraints, Operations Research, 16, 1967, 741–749.

    MathSciNet  Google Scholar 

  32. Greenberg, H.J. and W.P. Pierskalla, Quasiconjugate functions and surrogate duality, Cahiers du Centre d’étude de Recherche Operationelle, [4]15, 1973, 437–448.

    MathSciNet  Google Scholar 

  33. Gromicho, J., Quasiconvex Optimization and Location Theory, in Applied Optimization, v. 9, Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

  34. Hiriart-Urruty, J.B. and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, in Grundlehren der Mathematischen Wissenschaften, v. 305, Springer Verlag, Berlin, 1993.

    Google Scholar 

  35. Hiriart-Urruty, J.B. and C. Lemaréchal, Convex Analysis and Minimization Algorithms II, in Grundlehren der Mathematischen Wissenschaften, v. 306, Springer Verlag, Berlin, 1993.

    Google Scholar 

  36. Hocking, J.G and G.S. Young, Topology, Addison Wesley, Reading, Massachusetts, 1961.

    Google Scholar 

  37. Holmes, R.B., Geometric Functional Analysis and its Applications, Springer, New York, 1975.

    Google Scholar 

  38. Jahn, J., Mathematical Vector Optimization in Partially Ordered Spaces, Peter Lang, Fankfurt am Main, 1986.

    Google Scholar 

  39. Jensen, J.L.W.V., Sur les functions convexes et les inégalités entre des valeurs moyennes, Acta Math., 30, 1906, 175–193.

    MATH  Google Scholar 

  40. Joó, I., A simple proof for von Neumann’s minimax theorem, Acta Sci. Math. Szeged, 42, 1980, 91–94.

    MATH  MathSciNet  Google Scholar 

  41. Joó, I., Note on my paper: A simple proof for von Neumann’s minimax theorem, Acta Math. Hung., [3–4]44, 1984, 171–176.

    MathSciNet  Google Scholar 

  42. Joó, I., On some convexities, Acta Math.Hung., [1–2]54, 1989, 163–172.

    Google Scholar 

  43. Kolmogorov, A.N. and S.V. Fomin, Introductory Real Analysis, in Dover books on Mathematics, Dover Publications, New York, 1975.

    Google Scholar 

  44. Komlósi, S., Quasiconvex first-order approximations and Kuhn-Tucker type optimality conditions, European Journal of Operational Research, 65, 1993, 327–335.

    MATH  Google Scholar 

  45. Komlósi, S., Farkas theorems for positively homogeneous quasiconvex functions, Journal of Statistics and Management Systems, 5, 2002, 107–123.

    MATH  MathSciNet  Google Scholar 

  46. Kreyszig, E., Introductory Functional Analysis with Applications, Wiley, New York, 1978.

    Google Scholar 

  47. Lancaster, P. and M. Tismenetsky, The Theory of Matrices (Second Edition with Applications), in Computer Science and Applied Mathematics, Academic Press, Orlando, 1985.

    Google Scholar 

  48. Mandelbrojt, S., Sur les fonctions convexes, C.R. Acad. Sci. Paris, 209, 1939, 977–978.

    Google Scholar 

  49. Martínez-Legaz, J.-E.,Generalized convex duality and its economic applications, Chapter 6 in this volume.

    Google Scholar 

  50. Martínez-Legaz, J.-E.,Un concepto generalizado deconjugacion, application a las funciones quasiconvexas, M.Sc. Thesis, Universidad de Barcelona, 1981.

    Google Scholar 

  51. Minkowski, H., Algemeine Lehrsätze über die convexen Polyeder, Nachr. Ges. Wiss. Göttingen Math. Phys. K1, 1897, 198–219.

    Google Scholar 

  52. Minkowski, H., Geometrie der Zahlen, Teubner, Leipzig, 1910.

    Google Scholar 

  53. Nesterov, Y. and A. Nemirovski, Interior Point Polynomial Algorithms in Convex Programming, in SIAM Studies in Applied Mathematics, SIAM, Philadelphia, 1994.

    Google Scholar 

  54. Nocedal, J. and S.J. Wright, Numerical Optimization, in Springer series in Operations Research, Springer Verlag, New York, 1999.

    Google Scholar 

  55. Passy, U. and E.Z. Prisman, Conjugacy in quasi-convex programming, Mathematical Programming, 30, 1984, 121–146.

    MathSciNet  Google Scholar 

  56. Penot, J.-P. and M. Volle, On quasi-convex duality, Mathematics of Operations Research, [4]15, 1990, 597–624.

    MathSciNet  Google Scholar 

  57. Peterson, E.L., The fundamental relations between geometric programming duality, parametric programming duality and ordinary Lagrangian duality, Annals of Operations Research, 105, 2001, 109–153.

    MATH  MathSciNet  Google Scholar 

  58. Ponstein, J., Approaches to the Theory of Optimization, Cambridge University Press, Cambridge, 1980.

    Google Scholar 

  59. Popoviciu, T., Deux remarques sur les fonctions convexes, Bull. Sc. Acad. Roumaine, 20, 1938, 45–49.

    MATH  Google Scholar 

  60. Popoviciu, T., Les Fonctions Convexes, Hermann, Paris, 1945.

    Google Scholar 

  61. Prekopa, A., On the development of optimization theory, American Mathematical Monthly, [7]87, 1980, 527–542.

    MathSciNet  Google Scholar 

  62. Roberts, A.V. and D.E. Varberg, Convex Functions, Academic Press, New York, 1973.

    Google Scholar 

  63. Rockafellar, R.T., Convex Analysis, in Princeton Mathematical Series, v. 28, Princeton University Press, Princeton, New Jersey, 1972.

    Google Scholar 

  64. Rudin, W., Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.

    Google Scholar 

  65. Rudin, W., Functional Analysis, McGraw-Hill, New York, 1991.

    Google Scholar 

  66. Sion, M., On general minimax theorems, Pacific Journal of Mathematics, 8, 1958, 171–176.

    MATH  MathSciNet  Google Scholar 

  67. Sturm, J.F., Primal-Dual Interior Point Approach to Semidefinite Programming, PhD. Thesis, Econometric Institute, Erasmus University Rotterdam, 1997.

    Google Scholar 

  68. Valentine, F.A., Convex Sets, Mc-Graw Hill, San Francisco, 1964.

    Google Scholar 

  69. van Tiel, J., Convex Analysis: an Introductory Text, Wiley, New York, 1984.

    Google Scholar 

  70. Ville, J., Sur la théorie générale des jeux au intervient l’habilité des jouers, [2](5), in Traité du calcul des probabilités et de ses applications, E. Borel and others, eds., Gauthier-Villars Cie, Paris, 1938, 105–113.

    Google Scholar 

  71. Von Neumann, J., Zur Theorie der Gesellschaftsspiele, Math. Ann, 100, 1928, 295–320.

    Article  MATH  MathSciNet  Google Scholar 

  72. Vorob’ev, N.N., Game Theory: Lectures for Economists and Systems Scientists, in Applications of Mathematics, v. 7, Springer Verlag, New York, 1977.

    Google Scholar 

  73. Wolkowicz, H., Some applications of optimization in matrix theory, Linear Algebra and Its Applications, 40, 1981, 101–118.

    Article  MATH  MathSciNet  Google Scholar 

  74. Yuang, G.X.-Z., KKM Theory and Applications in Nonlinear Analysis, Marcel Dekker, New York, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Frenk, J.B., Kassay, G. (2005). Introduction to Convex and Quasiconvex Analysis. In: Hadjisavvas, N., Komlósi, S., Schaible, S. (eds) Handbook of Generalized Convexity and Generalized Monotonicity. Nonconvex Optimization and Its Applications, vol 76. Springer, New York, NY. https://doi.org/10.1007/0-387-23393-8_1

Download citation

Publish with us

Policies and ethics