Skip to main content

Fluorescent Carbon Dioxide Indicators

  • Chapter

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 9))

Abstract

There are few analytes in the world as significant as carbon dioxide, equal, as it is, in importance as oxygen and pH. Carbon dioxide is a basic chemical feedstock of life, which when coupled with green plant photosjoithesis1, i.e.

$$ CO_2 + H_2 O\xrightarrow{{sunlight}}C(H_2 O) + O_2 $$
(1)

where C(H20) is a reduced form of carbon such as a sugar or starch, generates the fuel and food necessary for the continued existence of most known forms of life. The reverse of reaction (1) is the basis of most cell metabolism, releasing, as it does, the energy for life. Thus, not only is carbon dioxide usually an essential ingredient to make the prerequisite chemicals for life, it is also often used as an indicator of the existence of life and a measure of health. For example, in medicine, the key, basic analytes that are routinely monitored in the blood of hospital patients are: dissolved oxygen, pH and carbon dioxide2. In clinical chemistry, a whole area devoted to the monitoring of the levels of carbon dioxide in breath has emerged, i.e. capnography, in which not only the level of carbon dioxide is important, but also its temporal variation, since both provide valuable medical diagnostic information3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Rabinowitch. and Govindjee, Photosynthesis (Wiley, New York, (1969).

    Google Scholar 

  2. C.L. Lake, Clinical Monitoring (W.B. Saunders Co., Philadelphia, (1990).

    Google Scholar 

  3. J.S. Gravenstein, Gas Monitoring and Pulse Oximetry (Butterworth-Heinemann, Boston, (1990).

    Google Scholar 

  4. D.G. Mou, Process dynamics: instrumentation and control, Biotech. Adv., 1, 229–245 (1983).

    Article  CAS  Google Scholar 

  5. M.L. Rooney, Active Food Packaging (Blackie Academic & Professional, London, (1995)

    Google Scholar 

  6. R.P. Wayne, Chemistry of Atmospheres, 3rd Edition, (Oxford University Press, Oxford, (2000).

    Google Scholar 

  7. J.W. Severinghaus and A.F. Bradley, Electrodes for blood P02 and Pco2: detemiination, J. Appld., Physiol., 13, 515–520 (1958).

    CAS  Google Scholar 

  8. M.A. Jensen and G.A. Rechnitz, Reponse characteristics of the pCO2: electrode. Anal. Chem., 51, 1972–1977 (1979).

    Article  CAS  Google Scholar 

  9. W.R. Seitz, Chemical sensors based on fibre-optics, Anal. Chem.,56, 16A–34A (1984).

    Article  CAS  Google Scholar 

  10. Fiber Optical Chemical Sensors and Biosensors, volume 1, edited by O.S. Wolfbeis (CRC Press, Boca Raton, Florida, (1991)

    Google Scholar 

  11. Fiber Optical Chemical Sensors and Biosensors, volume 2, edited by O.S. Wolfeis (CRC Press, Boca Raton, Florida, (1991)

    Google Scholar 

  12. G. Rao, S. B. Bambot, C.W. Kwong, H. Szmacinski, J. Sipior, R. Holavanahali and G. Carter, Application of fluorescence sensing to bioreactors, in: Topics in Fluorescence Spectroscopy, Volume 4: Probe Design and Chemical Sensing, edited by J.R. Lakowicz (Plenum, New York, (1994), pp 417–448.

    Google Scholar 

  13. H.N. McMurray and J. Albadran, Colorimetric and fluorimetric polymer membrane gas-sensing materials, MRS Bulletin, 55–59 (1999).

    Google Scholar 

  14. O.S. Wolfbeis, Fibre-optic chemical sensors and biosensors, Anal. Chem., 11, 81R–89R (2000).

    Article  CAS  Google Scholar 

  15. A. Mills and K. Eaton, Optical sensors for carbon dioxide: an overview of sensing strategies past and present, Quim. Anal., 19, 75–86 (2000).

    CAS  Google Scholar 

  16. O.S. Wolfbeis, Fibre-optic chemical sensors and biosensors. Anal. Chem., 74, 2663–2678 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. D.W. Lubbers and N. Opitz, Die/pC02/p02-Optode: Fine neue pC02/bzw pO2 meβsonde zur messung des pC02 oder/p02 von gasen und flüssigkeiten, Naturforsch., 30c, 532–533 (1975)

    Google Scholar 

  18. D.W. Lubbers and N. Opitz, Blood gas analysis with fluorescent dyes as an example of their usefulness as quantitative chemical sensors. Anal. Chem. Symp. Ser., 17, 609–619 (1983).

    Google Scholar 

  19. D.W. Lubbers and N. Opitz, Quantitative fluorescence photometry with biological fluids and gases, Adv. Exp. Med. Biol., 75, 65–68 (1976).

    PubMed  CAS  Google Scholar 

  20. N. Opitz and D.W. Lubbers, Compact CO2 gas analyser with favourable signal-to-noise ratio and resolution using special fluorescent sensors (optodes) illuminated by blue LED’s, Adv. Exp. Med. Biol., 180, 757–762 (1983).

    Google Scholar 

  21. Z. Zhujun and W.R. Seitz, A carbon dioxide sensor based on fluorescence. Anal. Chim. Acta, 160, 305–309 (1984).

    Article  Google Scholar 

  22. J.A. Ferguson, B.G. Healey, K.S. Bronk, S.N. Barnard and D.R. Wah, Simultaneous monitoring of pH, C02 and O2 using an optical imaging fibre, Anal. Chim. Acta, 340, 123–131 (1997).

    Article  CAS  Google Scholar 

  23. O.S. Wolfbeis, L.J. Weis, M.J.P. Leiner and W.E. Ziegler, Fibre-optic fluorosensor for oxygen and carbon dioxide. Anal. Chem., 60, 2028–2030 (1988).

    Article  CAS  Google Scholar 

  24. T. Hirschfeld, F. Miller, S. Thomas, H. Miller, F. Milanovich and R.W. Gaber, Laser-fibre-optic “optrode” for realtime in vivo blood carbon dioxide level monitoring, J. Lightwave Technol, L-5, 1027–1033 (1987).

    Article  ADS  Google Scholar 

  25. C. Munkholm, D.R. Walt and F.P. Milanovich, A fibre-optic sensor for CO2 measurement, Talanta, 35, 109–112 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. M. Uttamlal and D.R. Walt, A fibre-optic carbon dioxide sensor for fennentation monitoring, Biotechnol, 13, 597–601 (1995).

    Article  CAS  Google Scholar 

  27. M.J.P. Leiner, Optical sensors for in vitro blood-gas analysis, Sensors and Actuators B, 29, 169–173 (1995).

    Article  Google Scholar 

  28. M.J.P. Leiner, Luminescence chemical sensors for biomedical applications: scope and limitations, Anal. Chim. Acta, 255, 209–222 (1991)

    Article  CAS  Google Scholar 

  29. J.W. Parker, O. Laksin, C. Yu, M-L. Lau, S. Klima, R. Fisher, I. Scott, and B.W. Atwater, Fibre-optic sensors for pH and carbon dioxide using a self-referencing dye. Anal. Chem., 65, 2329–2334 (1995).

    Article  Google Scholar 

  30. M.B. Tabacco, M. Uttamlal, M. McAllister and D.R. Walt, An autonomous sensor and telemetry system for low-level pCO2 measurements in seawater. Anal. Chem., 71, 154–161, (1999).

    Article  CAS  Google Scholar 

  31. D.R. Walt, G. Gabor, and C. Goyet, Multiple-indicator fibre-optic sensor for high-resolution pC02 seawater measurements, Anal. Chim. Acta, 274, 47–52 (1993).

    Article  CAS  Google Scholar 

  32. J.R. Lakowicz, H. Szmacinski and M. Karakelle, High-stability non-invasive autoclavable naked optical CO2 sensor. Anal. Chim. Acta, 111, 179–186 (1993).

    Article  Google Scholar 

  33. G. Orellana, N.C. Morino-Bondi, B. Segovia, and M.D. Marazuela, Fibre-optic sensing of carbon dioxide based on excited-state proton transfer to a luminescent ruthenium (II) complex, Anal. Chem. 64, 2210–2215 (1992).

    Article  CAS  Google Scholar 

  34. M.D. Marazuela, N.C. Moreno-Bondi and G. Orellana, Enhanced perfomiance of a fibre-optic luminescent CO2: sensor using carbonic anhydrase, Sensors and Actuators B, 29, 126–131 (1995).

    Article  Google Scholar 

  35. M.D. Marazuela, M.C. Moreno-Bondi and G. Orellana, Luminescence lifetime quenching of ruthenium (II) polypyridyl dye for optical sensing of carbon dioxide. Applied Spectroscopy, 52, 1314–1320 (1998).

    Article  ADS  CAS  Google Scholar 

  36. O.S. Wolfbeis, E. Furlinger, H. Kroneis and H. Marsoner, Fluorimetric analysis: a study on fluorescent indicators for measuring near-neutral (“physiological”) pH-values, Fresenius Z Anal. Chem., 314, 119–124 (1983).

    Article  CAS  Google Scholar 

  37. A. Mills and Q. Chang, Fluorescence plastic thin-film sensor for carbon dioxide. Analyst, 118, 839–843 (1993).

    Article  CAS  Google Scholar 

  38. A. Mills and Q. Chang, Modelled diffusion-controlled response and recovery behaviour of a naked optical film sensor with a hyperbolic-type response to analyte concentration. Analyst, 117, 1461–1466 (1992).

    Article  CAS  Google Scholar 

  39. H. Szmacinski and J.R. Lakowicz, Lifetime-based sensing, in: Topics in Fluorescence Spectroscopy, Volume 4: Probe Design and Chemical Sensing, edited by J.R. Lakowicz (Plenum, New York, (1994), pp 295–334.

    Google Scholar 

  40. A. Mills, Response characteristics of optical sensors for oxygen: models based on a distribution in τo or kq, Analyst, 124, 1301–1308 (1999).

    Article  CAS  Google Scholar 

  41. A. Mills, Response characteristics of optical sensors for oxygen: model based on a distribution in τo and kq. Analyst., 124, 1309–1314 (1999).

    Article  CAS  Google Scholar 

  42. P. Herman, Z. Murtaza and J.R. Lakowicz, Sensing of carbon dioxide by a decrease in photoinduced electron transfer quenching, Anal. Biochem., 272, 87–93 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. D. B. Raemer, D.R. Walt and C. Munkholm, CO2 indicator for placement of tracheal tubes, US Patent No. 5,005,572 (1991).

    Google Scholar 

  44. A. Mills and Q. Chang, Carbon dioxide detector, US patent No. 5,480,611 (1996).

    Google Scholar 

  45. A. Mills, Q. Chang, and N. McMurray, Equilibrium studies on colorimetric plastic film sensors for carbon dioxide, Anal. Chem., 64, 1383–1389 (1992).

    Article  CAS  Google Scholar 

  46. A. Mills, G. Chang, and N. McMurray, Equilibrium studies on colorimetric plastic film sensors for carbon dioxide, Anal. Chem., 64, 1383–1389 (1992).

    Article  CAS  Google Scholar 

  47. B.H. Weigl and O.S. Wolfbeis, Sensitivity studies on optical carbon dioxide sensors based on ion pairing, Sensors and Actuators B, 28, 151–156 (1995).

    Article  Google Scholar 

  48. A. Mills and L. Wild, Measurement of dissolved carbon dioxide using colourimetric polymer films, in: Proceedings of Medical Sensors and Fibre Optic Sensors and Delivery Systems volume 2631, edited by G. Orellana and M.A. Scheggi (SPIE, Barcelona, 1995), pp. 100–109.

    Google Scholar 

  49. A. Mills, A. Lepre and L. Wild, Breath-by-breath Measurement of Carbon Dioxide Using a Plastic Film Optical Sensor, Sensors and Actuators B, 38–39, 419–425 (1997).

    Article  Google Scholar 

  50. Q. Chang, L. Randers-Eichhorn, J.R. Lakowicz and G. Rao, Steam-sterilisable fluorescence lifetime-based sensing film for dissolved carbon dioxide, Biotechnol. Prog., 14, 326–331 (1998).

    Article  PubMed  Google Scholar 

  51. Y. Kawabata, T. Kamachika, T. Imasaka and N. Ishibashi, Fibre-optic sensor for carbon dioxide with a pH indicator dispersed in a poly(ethylene glycol) membrane, Anal. Chim. Acta, 219, 223–229 (1989).

    Article  CAS  Google Scholar 

  52. A. Mills and Q. Chang, Carbon dioxide detector, US patent No. 5,480,611 (1996).

    Google Scholar 

  53. C. Munkholm, Method for activation of polyanionic fluorescent dyes in low dielectric media with quaternary onium compounds, U.S. Patent No. 5,387,525 (1995).

    Google Scholar 

  54. P. Miiller and P.C. Hauser, Fluorescence optical sensor for low concentrations of dissolved carbon dioxide. Analyst, 121, 339–343 (1996).

    Article  Google Scholar 

  55. O.S. Woltbeis, B. Kovacs, K. Goswami and S.N. Klainer, Fibre-optic fluorescence carbon dioxide sensor for environmental monitoring, Mikrochim. Acta, 129, 181–188 (1998).

    Article  Google Scholar 

  56. C. Malins and B.D. MacCraith, Dye-doped organically modified silica glass for fluorescence-based carbon dioxide gas detection. Analyst, 123, 23373–2376 (1998).

    Article  Google Scholar 

  57. C. Malins, M. Niggermann and B.M. MacCraith, Multi-and light-optical chemical sensor employing a plastic substrate, Meas. Sci. Technol, 11, 1105–1110 (2000).

    Article  ADS  CAS  Google Scholar 

  58. N. Nakamura and Y. Amao, Optical sensor for carbon dioxide combining colorimetric change of a pH indicator and a reference luminous dye. Anal. Bioanal. Chem., 376, 642–646 (2003).

    Article  PubMed  CAS  Google Scholar 

  59. N. Nakamura and Y. Amao, An optical sensor for CO: using thymol blue and europium (III) complex composite film. Sensors and Actuators B, 92, 98–101 (2003).

    Article  CAS  Google Scholar 

  60. N. Nakamura and Y. Amao, Optical CO2 sensor for the combination of colorimetric change of pH indicator and internal reference luminous dye, Bidl. Chem. Soc. Jpn., 76, 1459–1462 (2003).

    Article  CAS  Google Scholar 

  61. K. Ertekin, I. Klimant, G. Neurauter and O.S. Wolfbeis, Characterisation of a reservoir-type capillary optical microsensor for pCO2 measurements, Talanta, 59, 261–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. X. Ge, Y. Kostov and G. Rao, High-stability non-invasive autoclavable naked optical CO2 sensor, Biosensors and Bioelectronics, 18, 857–865 (2003).

    Article  PubMed  CAS  Google Scholar 

  63. D.A. Nivens, M.V. Schiza, S.N. Angel, Multilayer sol-gel membranes for optical sensing applications: single layer pH and dual layer C02 and NH3 sensors, Talanta, 58, 543–550 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. J. Sipior, S. Bambot, R.M. Smith, G.N. Carter, J.R. Lakowicz and G. Rao, A lifetime-based optical CO2 gas sensor with blue or red excitation and Stokes or anti-Stokes detection. Anal. Biochem., 227, 309–318 (1995).

    Article  PubMed  CAS  Google Scholar 

  65. J. Sipior, L. Randers-Eichhorn, J.R. Lakowicz, G.M. Carter and G. Rao, Phase fluorimetric optical carbon dioxide gas sensor for fermentation off-gas monitoring, Biotechnol. Prog., 12, 266–271 (1996).

    Article  CAS  Google Scholar 

  66. G. Neurauter, I. Klimant and O.S. Wolfbeis, Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer. Anal. Chim. Acta, 382, 67–75 (1999).

    Article  CAS  Google Scholar 

  67. G. Liebsch, I. Klimant, B. Frank, G. Hoist, and O.S. Wolfbeis, Luminescence lifetime imaging of oxygen, pH, and carbon dioxide distribution using optical sensing. Applied Spectroscopy, 54, 548–559 (2000).

    Article  ADS  CAS  Google Scholar 

  68. C. Von Bültzingslöwen, A. K. McEvoy, C. McDonagh, and B.D. MacCraith, Lifetime-based optical sensor for high-level pCO2 detection employing fluorescence resonance energy transfer, Anal. Chim. Acta, 480, 275–283 (2003).

    Article  CAS  Google Scholar 

  69. C. Von Bültzingslöwen, A.K. McEvoy, C. McDonagh, B.D. MacCraith, I. Klimat, C. Krause and O. Wolfbeis, Sol-gel based optical carbon dioxide sensor employing dual lumiphore referencing for applications in food packaging technology, Analyst, 111, 1478–1483 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Mills, A., Hodgen, S. (2005). Fluorescent Carbon Dioxide Indicators. In: Geddes, C.D., Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 9. Springer, Boston, MA. https://doi.org/10.1007/0-387-23335-0_3

Download citation

Publish with us

Policies and ethics