Skip to main content
  • 2395 Accesses

Abstract

The interface between classical and quantum physics has always been an interesting area, but its importance has grown with the current explosive thrusts in nanoscience. Taking devices to the limit of miniaturization where quantum effects become important makes it essential to understand the interplay between classical macroscopic properties and microscopic quantum properties. This is particularly true in nanomagnetism, where many potential applications require monodisperse, magnetic nanoparticles. One source of such species are single-molecule magnets (SMMs), individual molecules that function as single-domain magnetic particles. Below their blocking temperature, they exhibit magnetization hysteresis, the classical macroscale property of a magnet, as well as quantum tunneling of magnetization (QTM) and quantum phase interference, as properties of a micro-scale entity. Quantum tunneling is advantageous for some potential applications of single-molecule magnets, for example in providing the quantum superposition of states for quantum computing, but is a disadvantage in others such as information storage. This chapter introduces the basic concepts that are needed to understand the quantum phenomena observed in molecular nanomagnets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Hubert and R. Schäfer, “Magnetic Domains: The Analysis of Magnetic Microstructures”, Springer-Verlag, Berlin Heidelberg New York 1998.

    Google Scholar 

  2. W. Wernsdorfer, K. Hasselbach, D. Mailly, B. Barbara, A. Benoit, L. Thomas, and G. Suran, J. Magn. Magn. Mat. 145, 33 (1995).

    Article  ADS  Google Scholar 

  3. A. Aharoni, “An Introduction to the Theory of Ferromagnetism”, Oxford University Press, London 1996.

    Google Scholar 

  4. W. Wernsdorfer, Adv. Chem. Phys. 118, 99 (2001).

    Article  Google Scholar 

  5. T. Lis, Acta Cryst. B 36, 2042 (1980).

    Article  Google Scholar 

  6. K. Wieghardt, K. Pohl, I. Jibril, and G. Huttner, Angew. Chem. Int. Ed. Engl. 23, 77 (1984).

    Article  Google Scholar 

  7. A. Caneschi, D. Gatteschi, J. Laugier, P. Rey, R. Sessoli, and C. Zanchini, J. Am. Chem. Soc. 113, 5873 (1991).

    Article  Google Scholar 

  8. R. Sessoli, H.-L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc. 115, 1804 (1993).

    Article  Google Scholar 

  9. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, Nature 365, 141 (1993).

    Article  ADS  Google Scholar 

  10. A.-L. Barra, P. Debrunner, D. Gatteschi, Ch. E. Schulz, and R. Sessoli, EuroPhys. Lett. 35, 133 (1996).

    Article  ADS  Google Scholar 

  11. M. A. Novak and R. Sessoli, in “Quantum Tunneling of Magnetization-QTM’94”, Vol. 301 of NATO ASI Series E: Applied Sciences, Eds. L. Gunther and B. Barbara, Kluwer Academic Publishers, London 1995, pp. 171–188.

    Google Scholar 

  12. C. Paulsen and J.-G. Park, in “Quantum Tunneling of Magnetization-QTM’94”, Vol. 301 of NATO ASI Series E: Applied Sciences, Eds. L. Gunther and B. Barbara, Kluwer Academic Publishers, London 1995, pp. 189–205.

    Google Scholar 

  13. J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys. Rev. Lett. 76, 3830 (1996).

    Article  ADS  Google Scholar 

  14. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, Nature 383, 145 (1996).

    Article  ADS  Google Scholar 

  15. C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, Phys. Rev. Lett. 78, 4645 (1997).

    Article  ADS  Google Scholar 

  16. T. Ohm, C. Sangregorio, and C. Paulsen, Euro. Phys. J. B 6, 195 (1998).

    Article  ADS  Google Scholar 

  17. A. Caneschi, D. Gatteschi, C. Sangregorio, R. Sessoli, L. Sorace, A. Cornia, M. A. Novak, C. Paulsen, and W. Wernsdorfer, J. Magn. Magn. Mat. 200, 182 (1999).

    Article  ADS  Google Scholar 

  18. S. M. J. Aubin, N. R. Dilley, M. B. Wemple, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc. 120, 839 (1998).

    Article  Google Scholar 

  19. D. J. Price, F. Lionti, R. Ballou, P. T. Wood, and A. K. Powell, Phil. Trans. R. Soc. Lond. A 357, 3099 (1999).

    Article  ADS  Google Scholar 

  20. J. Yoo, E. K. Brechin, A. Yamaguchi, M. Nakano, J. C. Huffman, A. L. Maniero, L.-C. Brunei, K. Awaga, H. Ishimoto, G. Christou, and D. N. Hendrickson, Inorg. Chem. 39, 3615 (2000).

    Article  Google Scholar 

  21. A. J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K.A. Abboud, and G. Christou, Angew. Chem. Int. Ed. Engl. 43, 2117 (2004).

    Article  Google Scholar 

  22. M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Melinon, and A. Perez, Phys. Rev. Lett. 86, 4676 (2001).

    Article  ADS  Google Scholar 

  23. Y. Pontillon, A. Caneschi, D. Gatteschi, R. Sessoli, E. Ressouche, J. Schweizer, and E. Lelievte-Berna, J. Am. Chem. Soc. 121, 5342 (1999).

    Article  Google Scholar 

  24. A. Garg, EuroPhys. Lett. 22, 205 (1993).

    Article  ADS  Google Scholar 

  25. L. Landau, Phys. Z. Sowjetunion 2, 46 (1932).

    MATH  Google Scholar 

  26. C. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932).

    Article  MATH  ADS  Google Scholar 

  27. E. C. G. Stückelberg, Helv. Phys. Acta 5, 369 (1932).

    MATH  Google Scholar 

  28. S. Miyashita, J. Phys. Soc. Jpn. 64, 3207 (1995).

    Article  ADS  Google Scholar 

  29. S. Miyashita, J. Phys. Soc. Jpn. 65, 2734 (1996).

    Article  ADS  Google Scholar 

  30. G. Rose and P. C. E. Stamp, Low Temp. Phys. 113, 1153 (1998).

    Article  Google Scholar 

  31. M. Thorwart, M. Grifoni, and P. Hänggi, Phys. Rev. Lett. 85, 860 (2000).

    Article  ADS  Google Scholar 

  32. M. N. Leuenberger and D. Loss, Phys. Rev. B 61, 12200 (2000).

    Article  ADS  Google Scholar 

  33. W. Wernsdorfer and R. Sessoli, Science 284, 133 (1999).

    Article  ADS  Google Scholar 

  34. W. Wernsdorfer, T. Ohm, C. Sangregorio, R. Sessoli, D. Mailly, and C. Paulsen, Phys. Rev. Lett. 82, 3903 (1999).

    Article  ADS  Google Scholar 

  35. D. Loss, D. P. DiVincenzo, and G. Grinstein, Phys. Rev. Lett. 69, 3232 (1992).

    Article  ADS  Google Scholar 

  36. J. von Delft and C. L. Henley, Phys. Rev. Lett. 69, 3236 (1992).

    Article  ADS  Google Scholar 

  37. R. P. Feynman, R. B. Leighton, and M. Sand, “The Feynman Lectures on Physics”, Addison-Wesley Publishing Company, London 1970, Vol. 3.

    Google Scholar 

  38. A. Garg, Phys. Rev. Lett. 83, 4385 (1999).

    Article  ADS  Google Scholar 

  39. J. Villain and A. Fort, Euro. Phys. J. B 17, 69 (2000).

    Article  ADS  Google Scholar 

  40. E. Kececioglu and A. Garg, Phys. Rev. B 63, 064422 (2001).

    Article  ADS  Google Scholar 

  41. S. E. Barnes, cond-mat/9907257 0, 0 (1999).

    Google Scholar 

  42. J.-Q. Liang, H. J. W. Mueller-Kirsten, D. K. Park, and F.-C. Pu, Phys. Rev. B 61, 8856 (2000).

    Article  ADS  Google Scholar 

  43. Sahng-Kyoon Yoo and Soo-Young Lee, Phys. Rev. B 62, 3014 (2000).

    Article  ADS  Google Scholar 

  44. Hui Hu, Jia-Lin Zhu, Rong Lu, and Jia-Jiong Xiong, cond-mat/0005527 0, 0 (2000).

    Google Scholar 

  45. R. Caciuffo, G. Amoretti, A. Murani, R. Sessoli, A. Caneschi, and D. Gatteschi, Phys. Rev. Lett. 81, 4744 (1998).

    Article  ADS  Google Scholar 

  46. G. Amoretti, R. Caciuffo, J. Combet, A. Murani, and A. Caneschi, Phys. Rev. B 62, 3022 (2000).

    Article  ADS  Google Scholar 

  47. A. L. Barra, D. Gatteschi, and R. Sessoli, Chem. Eur. J. 6, 1608 (2000).

    Article  Google Scholar 

  48. W. Wernsdorfer, N. Aliaga-Alcalde, D.N. Hendrickson, and G. Christou, Nature 416, 406 (2002).

    Article  ADS  Google Scholar 

  49. R. Tiron, W. Wernsdorfer, D. Foguet-Albiol, N. Aliaga-Alcalde, and G. Christou, Phys. Rev. Lett. 91, 227203 (2003).

    Article  ADS  Google Scholar 

  50. D. N. Hendrickson et al., J. Am. Chem. Soc. 114, 2455 (1992).

    Article  Google Scholar 

  51. W. Wernsdorfer, S. Bhaduri, R. Tiron, D. N. Hendrickson, and G. Christou, Phys. Rev. Lett. 89, 197201 (2002).

    Article  ADS  Google Scholar 

  52. N. V. Prokof’ev and P. C. E. Stamp, Phys. Rev. Lett. 80, 5794 (1998).

    Article  ADS  Google Scholar 

  53. W. Wernsdorfer, A. Caneschi, R. Sessoli, D. Gatteschi, A. Cornia, V. Villar, and C. Paulsen, Phys. Rev. Lett. 84, 2965 (2000).

    Article  ADS  Google Scholar 

  54. J. J. Alonso and J. F. Fernandez, Phys. Rev. Lett. 87, 097205 (2001).

    Article  ADS  Google Scholar 

  55. I. Tupitsyn and P. C. E. Stamp, cond-mat/0305371 5, 5371 (2003).

    Google Scholar 

  56. W. Wernsdorfer, M. Soler, D. N. Hendrickson, and G. Christou, cond-mat/0306303 6, 303 (2003).

    Google Scholar 

  57. M. N. Leuenberger and D. Loss, Nature 410, 789 (2001).

    Article  ADS  Google Scholar 

  58. I. Chiorescu, W. Wernsdorfer, A. Müller, H. Bögge, and B. Barbara, Phys. Rev. Lett. 84, 3454 (2000).

    Article  ADS  Google Scholar 

  59. I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, 1869 (2003).

    Article  ADS  Google Scholar 

  60. L. Sorace, W. Wernsdorfer, C. Thirion, A.-L. Barra, M. Pacchioni, D. Mailly, and B. Barbara, Phys. Rev. Lett. 68, 220407 (2003).

    Google Scholar 

  61. A. Müller and J. Döring, Angew. Chem. Intl. Ed. Enl. 27, 1721 (1988).

    Article  Google Scholar 

  62. D. Gatteschi et al., Molecular Engineering 3, 157 (1993).

    Article  Google Scholar 

  63. B. Barbara, I. Chiorescu, W. Wernsdorfer, H. Bögge, and A. Müller, Prog. Theor. Phys. Suppl. 145, 357 (2002).

    Article  Google Scholar 

  64. G. Chaboussant, S.T. Oschenbein, A. Sieber, H. U. Güdel, H. Mukta, A. Müller, and B. Barbara, EuroPhys. Lett. 1, 1 (2004).

    Google Scholar 

  65. I. Chiorescu, W. Wernsdorfer, A. Müller, S. Miyashita, and B. Barbara, Phys. Rev. B 67, 020402 (2003).

    Article  ADS  Google Scholar 

  66. C. Thirion, W. Wernsdorfer, and D. Mailly, Nature Mat. 2, 524 (2003).

    Article  ADS  Google Scholar 

  67. A. Abragam and B. Bleaney, “Electron Paramagnetic Resonance of Transition Ions”, Clarendon Press, Oxford 1970.

    Google Scholar 

  68. Y. Ajiro, M. Itoh, Y. Inagaki, T. Asano, Y. Narumi, K. Kindo, T. Sakon, M. Motokawa, A. Cornia, D. Gatteschi, A. Müller, and B. Barbara, in “Proc. on the French-Japanese Symposium on Quantum Properties of Low-Dimensional Antiferromagnets”, Eds. Y. Ajiro and J. P. Boucher, Kyushu University Press, 7-1-146, Hakozaki Higashi-ku, Fukuoka-shi 812-0053, Japan, 2002, p. 80.

    Google Scholar 

  69. I. I. Rabi, Phys. Rev. 21, 652 (1937).

    Article  ADS  Google Scholar 

  70. M. Grifoni and P. Hanggi, Physics Reports 304, 229 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  71. G. C. Carter, H. H. Bennett, and D. J. Kahan, in “Metallic Shifts in NMR”, Vol. 20 of “Progress in Material Science”, Eds. B. Chalmers, J. W. Christian, and T. B. Massalki, Pergamon Press, London 1977.

    Google Scholar 

  72. A. Garg, Phys. Rev. Lett. 74, 1458 (1995).

    Article  ADS  Google Scholar 

  73. N. V. Prokof’ev and P. C. E. Stamp, J. Low Temp. Phys. 104, 143 (1996).

    Article  ADS  Google Scholar 

  74. D. A. Garanin, E. M. Chudnovsky, and R. Schilling, Phys. Rev. B 61, 12204 (2000).

    Article  ADS  Google Scholar 

  75. P. C. E. Stamp and I. S. Tupitsyn, Phys. Rev. B 69, 014401 (2004).

    Article  ADS  Google Scholar 

  76. S. Hill, R. S. Edwards, N. Aliaga-Alcalde, and G. Christou, Science 302, 1015 (2003).

    Article  ADS  Google Scholar 

  77. R. P. Feynman and F. L. Vernon, Ann. Phys. 24, 118 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  78. N. V. Prokof’ev and P. C. E. Stamp, Rep. Prog. Phys. 63, 669 (2000).

    Article  ADS  Google Scholar 

  79. T. Ohm, C. Sangregorio, and C. Paulsen, J. Low Temp. Phys. 113, 1141 (1998).

    Article  Google Scholar 

  80. A. Cuccoli, A. Fort, A. Rettori, E. Adam, and J. Villain, Euro. Phys. J. B 12, 39 (1999).

    Article  ADS  Google Scholar 

  81. I. Chiorescu, W. Wernsdorfer, B. Barbara, A. Mailer, and H. Bögge, J. Appl. Phys. 87, 5496 (2000).

    Article  ADS  Google Scholar 

  82. V. V. Dobrovitski, M. I. Katsnelson, and B. N. Harmon, Phys. Rev. Lett. 84, 3458 (2000).

    Article  ADS  Google Scholar 

  83. N. V. Prokof’ev and P. C. E. Stamp, in “Quantum Tunneling of Magnetization-QTM’94, Vol. 301 of NATO ASI Series E: Applied Sciences, Eds. L. Gunther and B. Barbara, Kluwer Academic Publishers, London 1995, p. 369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Wernsdorfer, W. (2006). Molecular Nanomagnets. In: Sellmyer, D., Skomski, R. (eds) Advanced Magnetic Nanostructures. Springer, Boston, MA. https://doi.org/10.1007/0-387-23316-4_6

Download citation

Publish with us

Policies and ethics