Skip to main content

Infrared Precision Spectroscopy Using Femtosecond-Laser-Based Optical Frequency-Comb Synthesizers

  • Chapter
  • 1738 Accesses

Abstract

Femtosecond-laser-based optical frequency comb synthesizers (OFSs) can play a fundamental role in precision spectroscopy and laser frequency control in the infrared (IR), as has happened in the visible and near-IR regions of the spectrum. Increasing demand for precise frequency measurements in the IR has resulted in a number of ideas for IR frequency synthesis (IFS) with visible combs. IR frequency synthesis and measurement require narrow linewidth, well-controlled and often widely tunable laser sources as well as high-accuracy frequency references. In this paper we review the state of the art of IR metrology following the advent of the OFS. In particular, we describe our system which uses a nonlinear difference-frequency-generated (DFG) IR source combined with an OFS to develop a widely tunable IR laser source with very narrow linewidth and with a frequency directly traceable to the Cs primary standard. The frequencies of saturated absorption spectra belonging to the intense molecular ro-vibrational transitions in this region can be measured with our OFS-referenced DFG source. An unprecedented dense grid of secondary frequency standards can be created with this DFG-OFS combination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. O. Hocker, A. Javan, R. Ramachandra, L. Frenkel and T. Sullivan, Appl. Phys. Lett. 10, 147 (1967).

    Article  ADS  Google Scholar 

  2. J. S. Wells, K. M. Evenson, G. W. Day and D. Halford, Proc. IEEE 60, 621 (1972).

    Article  Google Scholar 

  3. K. M. Evenson, J. S. Wells, L. M. Matarrese and L. B. Elwell, Appl. Phys. Lett. 16, 159 (1970).

    Article  ADS  Google Scholar 

  4. K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson and G. W. Day, Appl. Phys. Lett. 22, 192 (1973).

    Article  ADS  Google Scholar 

  5. K. M. Evenson et al., Phys. Rev. Lett. 29, 1346 (1972).

    Article  ADS  Google Scholar 

  6. Metrologia19, 163 (1984).

    Google Scholar 

  7. A. Clairon, B. Dahmani and J. Rutman, IEEE Trans. Instrum. Meas. 29, 268 (1980).

    Article  ADS  Google Scholar 

  8. S. N. Bagayev, A. E. Baklanov, V. P. Chebotayev and A. S. Dychkov, Appl. Phys. B 48, 31 (1989).

    Article  ADS  Google Scholar 

  9. O. Acef, IEEE Trans. Instrum. Meas. 46, 162 (1994).

    Article  Google Scholar 

  10. L. F. Constantin, R. J. Butcher, A. Amy-Klein, C. J. Bordé and C. Chardonnet, J. Phys. IV Pr. 10-Pr8, 199 (2000).

    Google Scholar 

  11. A. G. Maki and J. S. Wells, J. Res. NIST 97, 409 (1992).

    Google Scholar 

  12. G. Guelachvili et al., Pure Appl. Chem. 68, 193 (1996), and refs. therein.

    Article  Google Scholar 

  13. K. M. Evenson, D. A. Jennings and F. R. Petersen, Appl. Phys. Lett. 44, 576 (1984).

    Article  ADS  Google Scholar 

  14. P. De Natale, M. Bellini, W. Goetz, M. Prevedelli and M. Inguscio, Phys. Rev. A 48, 3757 (1993).

    Article  ADS  Google Scholar 

  15. M. Kourogi, K. Nakagawa and M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).

    Article  ADS  Google Scholar 

  16. M. Kourogi, B. Widiyatmoko, and M. Ohtsu, IEEE Photonics Technol. Lett. 8, 560 (1996).

    Article  ADS  Google Scholar 

  17. K. Imai, M. Kourogi and M. Ohtsu, IEEE J. Quantum Electron. 34, 54 (1998).

    Article  ADS  Google Scholar 

  18. C. Ishibashi et al., Opt. Commun. 19, 1777 (1994).

    Google Scholar 

  19. T. Morioka, S. Kawanishi, K. Mori and M. Saruwatari, Electron. Lett. 30, 790 (1994).

    Article  ADS  Google Scholar 

  20. T. Udem, J. Reichert, R. Holzwarth and T. W. Hänsch, Opt. Lett. 24, 881 (1999).

    Article  ADS  Google Scholar 

  21. T. Udem, J. Reichert, R. Holzwarth and T. W. Hänsch, Phys. Rev. Lett. 82, 3568 (1999).

    Article  ADS  Google Scholar 

  22. J. N. Eckstein, A. I. Ferguson and T. W. Hänsch, Phys. Rev. Lett. 40, 847 (1978).

    Article  ADS  Google Scholar 

  23. S. A. Diddams et al., Phys. Rev. Lett. 84, 5102 (2000).

    Article  ADS  Google Scholar 

  24. A. Bartels and H. Kurz, Opt. Lett. 27, 1839 (2002).

    Article  ADS  Google Scholar 

  25. T. Udem, R. Holzwarth and T. W. Hänsch, Nature 416, 233 (2002), and refs. therein.

    Article  ADS  ISI  Google Scholar 

  26. M. Niering et al., Phys. Rev. Lett. 84, 5496 (2000).

    Article  ADS  Google Scholar 

  27. P. Cancio et al., Phys. Rev. Lett. 92, 023001 (2004).

    Article  Google Scholar 

  28. T. Udem et al., Phys. Rev. Lett. 86, 4996 (2001).

    Article  ADS  Google Scholar 

  29. J. Stenger, C. Tamm, N. Haverkamp, S. Weyers and H. R. Telle, Opt. Lett. 26,1589 (2001).

    Article  ADS  Google Scholar 

  30. J. von Zanthier et al., Opt. Lett. 25, 1729 (2000).

    Article  ADS  Google Scholar 

  31. J. Stenger et al., Phys. Rev. A 63, 021802 (2001).

    Article  ADS  Google Scholar 

  32. D. J. Jones et al., Science 288, 635 (2000).

    Article  ADS  ISI  Google Scholar 

  33. G. Ferrari et al., Phys. Rev. Lett. 91, 243002 (2003).

    Article  ADS  Google Scholar 

  34. G. Herzberg, Molecular Spectra and Molecular Structure Vols. I, II, II, Krieger Publishing Company, 2nd edition, 1992.

    Google Scholar 

  35. S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti and P. De Natale, in International Conference on Lasers, Applications, and Technologies: Advanced Lasers and Systems, volume 5137 of SPIE Proceedings, page 339, SPIE, 2003.

    Article  ADS  Google Scholar 

  36. S. N. Bagayev et al., Appl. Phys. 10, 231 (1976).

    Article  ADS  Google Scholar 

  37. P. De Natale, G. Giusfredi, P. Cancio, D. Mazzotti and M. Inguscio, in Laser Spectroscopy — Proceedings of the XIV International Conference (ICOLS99), page 13, Singapore, 1999, World Scientific Publishing.

    Google Scholar 

  38. D. Mazzotti et al., Opt. Lett. 25, 350 (2000).

    Article  ADS  Google Scholar 

  39. G. Giusfredi, D. Mazzotti, P. Cancio and P. De Natale, Phys. Rev. Lett. 87, 113901 (2001).

    Article  ADS  Google Scholar 

  40. D. Mazzotti, S. Borri, P. Cancio, G. Giusfredi and P. De Natale, Opt. Lett. 27, 1256 (2002).

    Article  ADS  Google Scholar 

  41. S. Borri et al., Appl. Phys. B 76, 473 (2003).

    Article  ADS  Google Scholar 

  42. W. Demtröder, Laser Spectroscopy, Advanced Texts in Physics, Springer-Verlag, Berlin, 3nd edition, 2003.

    Google Scholar 

  43. C. Breant, T. Baer, D. Nesbitt and J. L. Hall, in Laser Spectroscopy — Proceedings of the VI International Conference (ICOLS83), page 138, Springer-Verlag, 1983.

    Google Scholar 

  44. L. Gianfrani, M. Gabrysch, C. Corsi and P. De Natale, Appl. Optics 36, 9481 (1997).

    Article  ADS  Google Scholar 

  45. J. Faist et al., Science 264, 553 (1994).

    Article  ADS  ISI  Google Scholar 

  46. G. Gagliardi et al., Eur. Phys. J. D 19, 327 (2002).

    ADS  Google Scholar 

  47. C. Roller et al., Opt. Lett. 28, 2052 (2003).

    Article  ADS  Google Scholar 

  48. J. T. Remillard et al., Opt. Express 7, 243 (2000).

    Article  ADS  Google Scholar 

  49. A. Tredicucci et al., Nature 396, 350 (1998).

    Article  ISI  ADS  Google Scholar 

  50. M. Marano, P. Laporta, A. Sapia and P. De Natale, Opt. Lett. 25, 1702 (2000).

    Article  ADS  Google Scholar 

  51. R. Paschotta et al., Opt. Commun. 136, 243 (1997).

    Article  ADS  Google Scholar 

  52. P. Cancio, P. Zeppini, P. De Natale, S. Taccheo and P. Laporta, Appl. Phys. B 70, 763 (2000).

    Article  ADS  Google Scholar 

  53. G. P. Agrawal, editor, Nonlinear Fiber Optics, Academic Press, 3rd edition, 2001.

    Google Scholar 

  54. M. M. Fejer, G. A. Magel, D. H. Jundt and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).

    Article  ADS  Google Scholar 

  55. E. V. Kovalchuk et al., Opt. Lett. 26, 1430 (2001).

    Article  ADS  Google Scholar 

  56. U. Stroßner et al., J. Opt. Soc. Am. B 19, 1419 (2002).

    Article  ADS  Google Scholar 

  57. D. Richter, A. Fried, B. P. Wert, J. G. Walega and F. K. Tittel, Appl. Phys. B 75, 281 (2002).

    Article  ADS  Google Scholar 

  58. P. Maddaloni, G. Gagliardi and P. De Natale, to be published, 2004.

    Google Scholar 

  59. D. Mazzotti et al., Appl. Phys. B 70, 747 (2000).

    Article  ADS  Google Scholar 

  60. D. Mazzotti, P. Cancio, G. Giusfredi, M. Inguscio and P. De Natale, Phys. Rev. Lett. 86, 1919 (2001).

    Article  ADS  Google Scholar 

  61. D. Mazzotti, G. Giusfredi, P. Cancio and P. De Natale, Opt. Lasers Eng. 37, 143 (2002).

    Article  Google Scholar 

  62. J.-J. Zondy, Opt. Commun. 119, 320 (1995).

    Article  ADS  Google Scholar 

  63. M. Erdelyi, D. Richter and F. K. Tittel, Appl. Phys. B 75, 289 (2002).

    Article  ADS  Google Scholar 

  64. E. R. Brown, K. A. McIntosh, K. B. Nichols and C. L. Dennis, Appl. Phys. Lett. 66, 285 (1995).

    Article  ADS  Google Scholar 

  65. H. Odashima, M. Tachikawa, L. R. Zink and K. M. Evenson, Opt. Lett. 22, 822 (1997).

    Article  ADS  Google Scholar 

  66. G. Gagliardi et al., Opt. Lett. 27, 521 (2002).

    Article  ADS  Google Scholar 

  67. G. Galzerano, M. Marano, S. Taccheo and P. Laporta, Opt. Lett. 28, 248 (2003).

    Article  ADS  Google Scholar 

  68. J. Lu et al., Opt. Lett. 27, 1120 (2002).

    Article  ADS  Google Scholar 

  69. J. Nilsson et al., in Advances in Fiber Lasers, volume 4974 of SPIE Proceedings, page 50, SPIE, 2003.

    Article  ADS  Google Scholar 

  70. W. A. Clarkson et al., in XIV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, volume 5120 of SPIE Proceedings, page 482, SPIE, 2003.

    Article  ADS  Google Scholar 

  71. V. Berger, volume 531 of Lecture Notes in Physics, page 366, Springer-Verlag, Heidelberg, 1999.

    Google Scholar 

  72. V. G. Dmitriev, G. G. Gurzadyan and D. N. Nikogosyan, volume 64 of Springer Series in Optical Sciences, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  73. P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).

    Article  ADS  Google Scholar 

  74. D. K. Negus, L. Spinelli, N. Goldblatt and G. Feugnet, in Advanced Solid-State Lasers, volume 10 of OSA Proceedings, page 120, Washington, DC, 1991, Optical Society of America.

    Google Scholar 

  75. D. E. Spence, P. N. Kean and W. Sibbett, Opt. Lett. 16, 42 (1991).

    Article  ADS  Google Scholar 

  76. U. Keller, Opt. Lett. 16, 1022 (1991).

    Article  ADS  Google Scholar 

  77. F. Salin, J. Squier and M. Piché, Opt. Lett. 16, 1674 (1991).

    Article  ADS  Google Scholar 

  78. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on the Femtosecond Timescale, Academic Press, Dan Diego, 1996.

    Google Scholar 

  79. E. P. Ippen, Appl. Phys. B 58, 159 (1994).

    Article  ADS  Google Scholar 

  80. V. Magni, G. Cerullo, S. De Silvestri and A. Monguzzi, J. Opt. Soc. Am. B 12, 476 (1995).

    Article  ADS  Google Scholar 

  81. U. Morgner et al., Opt. Lett. 24, 411 (1999).

    Article  ADS  Google Scholar 

  82. D. H. Sutter et al., Opt. Lett. 24, 631 (1999).

    Article  ADS  Google Scholar 

  83. R. Ell et al., Opt. Lett. 26, 373 (2001).

    Article  ADS  Google Scholar 

  84. R. L. Fork, O. E. Martinez and J. P. Gordon, Opt. Lett. 9, 150 (1984).

    Article  ADS  Google Scholar 

  85. M. T. Asaki et al., Opt. Lett. 18, 977 (1993).

    Article  ADS  Google Scholar 

  86. R. Szipocs, K. Ferencz, C. Spielmann and F. Krausz, Opt. Lett. 19, 201 (1994).

    Article  ADS  Google Scholar 

  87. L. Xu, C. Spielmann, F. Krausz and R. Szipocs, Opt. Lett. 21, 1259 (1996).

    Article  ADS  Google Scholar 

  88. S. T. Cundiff, J. Phys. D 35, R43 (2002).

    Article  ADS  Google Scholar 

  89. H. R. Telle et al., Appl. Phys. B 69, 327 (1999).

    Article  ADS  Google Scholar 

  90. J. Reichert, R. Holzwarth, T. Udem and T. W. Hänsch, Opt. Commun. 172, 59 (1999).

    Article  ADS  Google Scholar 

  91. A. Apolonski et al., Phys. Rev. Lett. 85, 740 (2000).

    Article  ADS  Google Scholar 

  92. A. Poppe et al., Appl. Phys. B 72, 977 (2001).

    Article  Google Scholar 

  93. L. Xu et al., Opt. Lett. 21, 2008 (1996).

    Article  ADS  Google Scholar 

  94. F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle and U. Keller, Appl. Phys. B 74, S35 (2002).

    Article  ADS  Google Scholar 

  95. K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff and J. Ye, Opt. Lett. 28, 851 (2003).

    Article  ADS  Google Scholar 

  96. U. Morgner et al., Phys. Rev. Lett. 86, 5462 (2001).

    Article  ADS  Google Scholar 

  97. T. M. Ramond, S. A. Diddams, L. W. Hollberg and A. Bartels, Opt. Lett. 27, 1842 (2002).

    Article  ADS  Google Scholar 

  98. J. K. Ranka, R. S. Windeler and A. J. Stentz, Opt. Lett. 25, 25 (2000).

    Article  ADS  Google Scholar 

  99. T. A. Birks, W. J. Wadsworth and P. S. Russell, Opt. Lett. 25, 1415 (2000).

    Article  ADS  Google Scholar 

  100. W. J. Wadsworth et al., J. Opt. Soc. Am. B 19, 2148 (2002).

    Article  ADS  Google Scholar 

  101. J. W. Nicholson et al., Opt. Lett. 28, 643 (2003).

    Article  ADS  Google Scholar 

  102. J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye and S. T. Cundiff, Opt. Express 10,1404 (2002).

    ADS  Google Scholar 

  103. A. Apolonski et al., J. Opt. Soc. Am. B 19, 2165 (2002).

    Article  ADS  Google Scholar 

  104. F. L. Hong et al., Opt. Lett. 28, 1516 (2003).

    Article  ADS  Google Scholar 

  105. I. Thomann et al., Opt. Lett. 28, 1368 (2003).

    Article  ADS  Google Scholar 

  106. H. Hundertmark et al., Opt. Express 11, 3196 (2003).

    Article  ADS  Google Scholar 

  107. P. De Natale et al., in Laser Spectroscopy-Proceedings of the XVI International Conference (ICOLS03), page 63, Singapore, 2004, World Scientific Publishing.

    Google Scholar 

  108. D. Mazzotti, P. Cancio, M. Prevedelli, G. Giusfredi and P. De Natale, to be published, 2004.

    Google Scholar 

  109. S. A. Diddams et al., Science 293, 825 (2001).

    Article  ADS  ISI  Google Scholar 

  110. Harvard-Smithsonian Center for Astrophysics, 2004, http://www.hitran.com.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

De Natale, P., Cancio, P., Mazzotti, D. (2005). Infrared Precision Spectroscopy Using Femtosecond-Laser-Based Optical Frequency-Comb Synthesizers. In: Hannaford, P. (eds) Femtosecond Laser Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/0-387-23294-X_5

Download citation

Publish with us

Policies and ethics