Skip to main content

Femtosecond Combs for Precision Metrology

  • Chapter
Femtosecond Laser Spectroscopy

Abstract

A new stage of development of optical clocks and synthesizers is possible with the use of highly stable femtosecond lasers. Using femtosecond lasers and special optical fibres, a highly stable frequency comb covering the frequency interval up to several hundreds of THz with a spacing from 100 MHz to 1 GHz has been developed. Experimental schemes for the femtosecond optical clock based on the He-Ne/CH4 and Nd:YAG/I2 frequency standards are presented. The possibility of using tapered fibres for optical clocks and synthesizers is investigated. It is shown that, depending on their influence on the frequency characteristics of the spectral components of the transmitted radiation, tapered fibres can be used in femtosecond optical clocks and synthesizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.P. Chebotayev, V.G. Goldort, V.M. Klementyev, M.V. Nikitin, B.A. Timchenko and V.F. Zakhariash, Appl. Phys. B 29, 63 (1982).

    Article  ADS  Google Scholar 

  2. Ye.V. Baklanov and V.P. Chebotaev, Appl. Phys. 12, 97 (1977).

    Article  ADS  Google Scholar 

  3. J.N. Eckstein, A.I. Ferguson and T.W. Hänsch, Phys. Rev. Lett. 40, 847 (1978).

    Article  ADS  Google Scholar 

  4. S.N. Bagayev, V.P. Chebotayev, V.M. Klementyev and O.I. Pyltsin, Proc. 10th Int. Conf. on Laser Spectroscopy, Font-Romeu, France, June 17–21, p. 91 (1991).

    Google Scholar 

  5. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000); J.L. Hall and J. Ye, Optics and Photonics News, February, p. 44 (2001).

    Article  ADS  Google Scholar 

  6. J.C. Knight, T.A. Birks, P.St.J. Russell and D.M. Atkin, Opt. Lett. 21, 1547 (1996).

    Article  ADS  Google Scholar 

  7. J.C. Knight, J. Broeng, T.A. Birks and P.St.J. Russell, Science 282, 1476 (1998); P.St.J. Russell, Laser Focus World, September, p. 77 (2002); A.M. Zheltikov, Physics-Uspekhi 170, 1203 (2000).

    Article  ISI  Google Scholar 

  8. T.A. Birks, W.J. Wadsworth and P.St.J. Russell, Opt. Lett. 25, 1415 (2000).

    Article  ADS  Google Scholar 

  9. J.K. Ranka, R.S. Windeler and A.J. Stentz, Opt. Lett. 25, 25 (2000).

    Article  ADS  Google Scholar 

  10. S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzwarth, T. Udem and T.W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).

    Article  ADS  Google Scholar 

  11. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundi, Science 288, 635 (2000).

    Article  ADS  ISI  Google Scholar 

  12. H.R. Telle, G. Steinmeyer, A.E. Dunlop, J. Stenger, D.H. Sutter and U. Keller, Appl. Phys. B 69, 327 (1999); J. Reichert, R. Holzwarth, Th. Udem, and T.W. Hänsch, Opt. Commun., 172, 59 (1999); D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundi, Science, 288, 635 (2000); R. Holzwarth, M. Zimmermann, Th. Udem, and T.W. Hänsch, IEEE J. Quantum Electron. 37, 1493 (2001).

    Article  ADS  Google Scholar 

  13. J. Reichert, M. Niering, R. Holzwarth and M. Weitz, Th. Udem and T.W. Hänsch, Phys. Rev. Lett. 84, 3232 (2000).

    Article  ADS  Google Scholar 

  14. R. Holzwarth, Th. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth and P.St.J. Russell, Phys. Rev. Lett, 85, 2264 (2000).

    Article  ADS  Google Scholar 

  15. S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff and J.L. Hall, Phys. Rev. Lett. 84, 5102 (2000).

    Article  ADS  Google Scholar 

  16. J. Stenger, T. Binnewies, G. Wilpers, F. Riehle, H.R. Telle, J.K. Ranka, R.S. Windeler and A.J. Stentz, Phys. Rev. A 63, 021802 (R) (2001).

    Article  ADS  Google Scholar 

  17. Th. Udem, A.A. Diddams, K.R. Vogel, C.W. Oates, E.A. Curtis, W.D. Lee, W.M. Itano, R.E. Drullinger, J.C. Bergquist and L. Hollberg, Phys. Rev. Lett. 86, 4996 (2001).

    Article  ADS  Google Scholar 

  18. J. Stenger, Chr. Tamm, N. Haverkamp, S. Weyers and H.R. Telle, Opt. Lett. 26, 1589 (2001).

    Article  ADS  Google Scholar 

  19. S.N. Lea, et al., Proc. 6th Symp. on Frequency Standards and Metrology, Singapore (2002).

    Google Scholar 

  20. Th. Udem, J. Reichert, R. Holzwarth and T.W. Hänsch, Opt. Lett. 24, 881 (1999).

    Article  ADS  Google Scholar 

  21. S.N. Bagayev, S.V. Chepurov, V.M. Klementyev, S.A. Kuznetsov, V.S. Pivtsov, V.V. Pokasov and V.F. Zakharyash, Appl. Phys. B 70, 375 (2000); S.N. Bagayev, S.V. Chepurov, V.M. Klementyev, D.B. Kolker, S.A Kuznetsov, Yu.A. Matyugin, V.S. Pivtsov, M.N. Skvortsov and V.F. Zakharyash, Quantum Electronics 31, 383 (2001).

    Article  ADS  Google Scholar 

  22. S.N. Bagayev, A.K. Dmitriyev, S.V. Chepurov, A.S. Dychkov, V.M. Klementyev, D.B. Kolker, S.A. Kuznetsov, Yu.A. Matyugin, M.V. Okhapkin, V.S. Pivtsov, M.N. Skvortsov, V.F. Zakharyash, T.A. Birks, W.J. Wadsworth and P.St.J. Russell, Laser Physics 11, 1270 (2001).

    ISI  Google Scholar 

  23. M.V. Okhapkin, M.N. Skvortsov, A.M. Belkin, N.L. Kvashnin and S.N. Bagayev, Opt. Commun. 203, 359 (2002).

    Article  ADS  Google Scholar 

  24. A.W. Snyder and J.D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983) p. 253.

    Google Scholar 

  25. D. Marcuse, Light Transmission Optics (van Nostrand Reinhold, New York, 1982) p.12.

    Google Scholar 

  26. G.P. Agrawal, Nonlinear Fibre Optics (Boston, Academic, 1989).

    Google Scholar 

  27. S.M. Kobtsev, S.V. Kukarin and N.V. Fateev, Quantum Electronics 32, 11 (2002); J. Teipel, K. Franke, D. Turke, F. Warken, D. Meiser, M. Leuschner and H. Giessen, Appl. Phys. B 77, 245 (2003).

    Article  ISI  ADS  Google Scholar 

  28. S.N. Bagayev, V.I. Denisov, V.F. Zakharyash, V.M. Klementyev, I.I. Korel, S.A. Kuznetsov, V.S. Pivtsov and S.V. Chepurov, Quantum Electronics 33, 883 (2003).

    Article  ISI  ADS  Google Scholar 

  29. A. Hasegawa and F. Tappert, Appl. Phys. Lett., 23, 142 (1973); R.K. Dodd et al., Solitons and Nonlinear Wave Equations (Academic, New York, 1982).

    Article  ADS  Google Scholar 

  30. T. Taniuiti and H. Washimi, Phys. Rev. Lett. 21, 209 (1968); A. Hasegawa, Opt. Lett. 9, 288 (1984).

    Article  ADS  Google Scholar 

  31. J. Hermann et al., Phys. Rev. Lett. 88, 17 (2002).

    Article  Google Scholar 

  32. D. Eliyahu, R.A. Salvatore and A. Yariv, J. Opt. Soc. Am. B 13, 7 (1996); I.G. Fuss, IEEE J. Quantum Electron. 30, 2707 (1994).

    Article  Google Scholar 

  33. R.A. Fisher and W.K. Bischel, Appl. Phys. Lett. 23, 661 (1973).

    Article  ADS  Google Scholar 

  34. N. Tzoar and M. Jain, Phys. Rev. A 23, 1266 (1981).

    Article  ADS  Google Scholar 

  35. E.M. Dianov et al., JETP Letters 41, 242 (1985).

    Google Scholar 

  36. B.R. Washburn, S.E. Ralph and R.S. Windeler, Optics Express 10, 575 (2002).

    ADS  ISI  Google Scholar 

  37. S.N. Bagayev, V.F. Zakharyash, V.M. Klementyev, V.S. Pivtsov and S.V. Chepurov, Quantum Electron. 27, 317 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Bagayev, S.N. et al. (2005). Femtosecond Combs for Precision Metrology. In: Hannaford, P. (eds) Femtosecond Laser Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/0-387-23294-X_4

Download citation

Publish with us

Policies and ethics