Skip to main content
  • 3404 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Colebrook, C.F. (1939). Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws, J. Inst. of Civ. Engrs., 11, Feb. 1939, pp. 133–156.

    Google Scholar 

  • Clift, R., Grace, J. R. and Weber, M. E. (1978). Bubbles, Drops, and Particles, Academic Press, New York.

    Google Scholar 

  • Cooke, R. (2002). Laminar flow settling: the potential for unexpected problems, Hydrotransport 15. BHR Group, Banff, AB, Canada, 121–133.

    Google Scholar 

  • Duckworth, R. A., Pullum, L., Lockyear, C. F. and Lenard, J. A. (1983b). Hydraulic transport of coal. Bulk Solids Handling 3.

    Google Scholar 

  • Duckworth, R. A., Pullum, L. and Lockyear, C. F. (1986b). Pipeline transport of coarse materials in a non-Newtonian carrier fluid. Hydrotransport 10. BHRA, Innsbruck, Austria.

    Google Scholar 

  • Elliot, D. E., and Gliddon, B. J. (1970). Hydraulic transport of coal at high concentrations. Hydrotransport 1, BHRA, Cranfield, UK. paper G2.

    Google Scholar 

  • Gillies, R.G. and Shook, C.A. (1991). A deposition velocity correlation for water slurries, Canad. J. Chem. Engrg, Vol. 69, pp 1225–1227.

    Google Scholar 

  • Gillies, R.G. and Shook, C.A. (2000). Modelling high-concentration settling slurry flows, Can. J. Chem. Eng., Vil. 33(4), pp. 709–716.

    Article  Google Scholar 

  • Horsley, M.R., Horsley, R.R. and Wilson, K.C. (2003). Non-Newtonian effects on fall velocities of pairs of vertically-aligned spheres, Internat’l. Conf. on Non-Newtonian Rheometry, Inst. of Non-Newtonian Fluid Mechanics, University of Wales, Cardiff, UK.

    Google Scholar 

  • Maciejewski, W., Oxenford, J. and Shook, C.A. (1993). Transport of coarse rock with sand and clay slurries, Proc. Hydrotransport 12, Brugge, Belgium, BHR Group, Cranfield, UK, pp. 705–724.

    Google Scholar 

  • Prandtl, L. (1933). Neuere Ergebnisse Turbulenzforschung, Zeitschrift des Vereines Deutscher Ingenieure, Berlin, Germany 77(5), pp. 105–114.

    Google Scholar 

  • L. Pullum, L., Rudman, M., Graham, L.J.W., Downie, R.J., Bhattacharya, S.N., Chryss, A. and Slatter, P.T. (2001). AMIRA P599, High concentration suspension pumping, 2nd progress report. Melbourne Australia

    Google Scholar 

  • Schaan, J., Sumner, R.J., Gillies, R.G. and Shook, C.A. (2000). Effect of particle shape on pipeline friction for Newtonian slurries of fine particles, Canad. J. Chem. Engrg, Vol 78(4), pp 717–725.

    Article  CAS  Google Scholar 

  • Sundqvist, Å., Sellgren, A. and Addie, G.R. (1996a). Pipeline friction losses of coarse sand slurries, Powder Technology, Vol. 89, pp. 9–18.

    Article  CAS  Google Scholar 

  • Sundqvist, Å., Sellgren, A. and Addie, G.R. (1996b). Slurry pipeline friction losses for coarse and high-density industrial products, Powder Technology, Vol. 89, pp 19–28.

    Article  CAS  Google Scholar 

  • Thomas, A.D. (1978). Coarse particles in a heavy medium — turbulent pressure drop reduction and deposition under laminar flow, Hydrotransport 5, BHRA, Hannover, Germany, paper D5.

    Google Scholar 

  • Thomas, A. D. (1979a). Pipelining of coarse coal as a stabilized slurry: another viewpoint. 4th International Technical Conference on Slurry Transportation. Slurry Transportation Association, Las Vegas, USA.

    Google Scholar 

  • Thomas, A. D. (1979b). Settling of particles in a horizontally sheared Bingham plastic, 1 st National Conference on Rheology, Melbourne, Australia.

    Google Scholar 

  • Thomas, A.D. and Wilson, K.C. (1987). New analysis of non-Newtonian turbulent flow — Yield-power-law fluids, Canad. J. Chem. Engrg., 65, pp. 335–8.

    Article  CAS  Google Scholar 

  • Thomas, A.D., Pullum, L. and Wilson, K.C. (2004). Stabilised laminar slurry flow: review, trends and prognosis, Proc. Hydrotransport 16, BHR Group, Cranfield, UK, pp. 701–716.

    Google Scholar 

  • Turton & Levenspiel (1986). Turton, R. & Levenspiel, O. (1986). A Short Note on Drag Correlation for Spheres, Powder Technol, 47, p. 83.

    Article  CAS  Google Scholar 

  • Wilson, K.C. (1988). Effect of non-Newtonian slurry properties on drag reduction and coarse particle suspension. Proc. 10th Intern’l Conf. on Rheology, Sydney, Australia, Vol. 1, pp. 110–115.

    Google Scholar 

  • Wilson, K. C. (2000). Particle motion in sheared non-Newtonian media. 3 rd Israeli Conf. for Conveying and Handling of Particulate Solids, Dead Sea, Israel, 12.9–12.13.

    Google Scholar 

  • Wilson, K.C. and Addie, G.R. (2002). Pipe-flow experiments with a sand-clay mixture, Proc. Hydrotramsport 15, BHR Group, Cranfield, UK, pp. 577–588.

    Google Scholar 

  • Wilson, K.C. and Horsley, R.R., (2004). Calculating fall velocities in non-Newtonian (and Newtonian) fluids: a new view. Proc. Hydrotransport 16, BHR Group, Cranfield, UK, pp. 37–46.

    Google Scholar 

  • Wilson, K.C. and Sellgren, A. (2001). Hydraulic transport of solids. Pump Handbook, 3rd Edition, pp. 9.321–9.349.

    Google Scholar 

  • Wilson, K.C. and Sellgren, A. (2002). Effect of particle grading on pressure drops in slurry flows, Proc. 11th Intern’l Conf. on Transport and Sedimentation of Solid Particles, Ghent, Belgium, pp. 277–287.

    Google Scholar 

  • Wilson, K.C. and Thomas, A.D. (1985). A new analysis of the turbulent flow of non-Newtonian fluids, Canad. J. Chem. Engrg., 63, pp. 539–46.

    CAS  Google Scholar 

  • Wilson, K.C, Clift, R. And Sellgren, A. (2002). Operating points for pipelines carrying concentrated heterogeneous slurries, Powder Technology, Vol. 123, pp. 19–24.

    Article  CAS  Google Scholar 

  • Wilson, K. C, Horsley, R. R, Kealy, T., Reizes, J. C. and Horsley, M. (2003). Direct prediction of fall velocities in non-Newtonian materials, Int’l. J. Mineral Proc, 71/1–4, pp 17–30.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). Complex Slurries. In: Slurry Transport Using Centrifugal Pumps. Springer, Boston, MA. https://doi.org/10.1007/0-387-23263-X_7

Download citation

Publish with us

Policies and ethics