Cholesterol and Amyloid β Fibrillogenesis

  • Katsuhiko Yanagisawa
Part of the Subcellular Biochemistry book series (SCBI, volume 38)


Evidence is accumulating to suggest that cholesterol is a potent risk factor for the development of Alzheimer’s disease. An increase in cholesterol level in neuronal membranes may facilitate the generation and aggregation of the amyloid β-protein (Aβ). Our results and those of other groups suggest that cholesterol has both direct and indirect effects of acceleration of Aβ fibrillogenesis. A novel concept of cholesterol neurobiology is necessary to elucidate the mechanism underlying cholesterol-dependent Aβ pathology.

Key words

Amyloid β-protein fibrillogenesis cholesterol GM1 ganglioside lipid raft senile plaque aging apolipoprotein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auer, LA., Schmidt, M.L., Lee, V.M., Curry, B., Suzuki, K., Shin, R.W., Pentchev, P.G., Carstea, E.D., and Trojanowski, J.Q., 1995, Paired helical filament tau (PHFtau) in Niemann-Pick type C disease is similar to PHFtau in Alzheimer’s disease. Acta. Neuropathol. (Berl) 90: 547–551.Google Scholar
  2. Avdulov, N.A., Chochina, S.V., Igbavboa, U., Warden, C.S., Vassiliev, A.V., and Wood, W.G., 1997, Lipid binding to amyloid β-peptide aggregates: preferential binding of cholesterol as compared with phosphatidylcholine and fatty acids. J. Neurochem. 69: 1746–1752.PubMedCrossRefGoogle Scholar
  3. Bjorkhem, I., Lutjohann, D., Diczfalusy, U., Stahle, L., Ahlborg, G., and Wahren, J., 1998, Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J. Lipid Res. 39: 1594–1600.PubMedGoogle Scholar
  4. Cenedella, R.J., and Shi, H., 1994, Spatial distribution of 3-hydroxy-3-methylglutaryl coenzyme A reductase messenger RNA in the ocular lens: relationship to cholesterologenesis. J. Lipid Res. 35: 2232–2240.PubMedGoogle Scholar
  5. Choo-Smith, L.P., and Surewicz, W.K., 1997, The interaction between Alzheimer amyloid β(1-40) peptide and ganglioside GM1-containing membranes. FEES Lett. 402: 95–98.CrossRefGoogle Scholar
  6. Choo-Smith, L.P., Garzon-Rodriguez, W., Glabe, C.G., and Surewicz, W.K., 1997, Acceleration of amyloid fibril formation by specific binding of Aβ-(l–40) peptide to ganglioside-containing membrane vesicles. J. Biol. Chem. 272: 22987–22990.PubMedCrossRefGoogle Scholar
  7. Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., and Pericak-Vance, M.A., 1993, Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261: 921–923.PubMedCrossRefGoogle Scholar
  8. Dietschy, J.M., and Turley, S.D., 2001, Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12: 105–112.PubMedCrossRefGoogle Scholar
  9. Diomede, L., Salmona, M., Albani, D., Bianchi, M., Bruno, A., and Salmona, S., Nicolini, U., 1999, Alteration of SREBP activation in liver of trisomy 21 fetuses. Biochem. Biophys. Res. Commun. 260: 499–503.PubMedCrossRefGoogle Scholar
  10. Ehehalt, R., Keller, P., Haass, C, Thiele, C, and Simons, K., 2003, Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160: 113–123.PubMedCrossRefGoogle Scholar
  11. Fassbender, K., Simons, M., Bergmann, C., Stroick, M., Lutjohann, D., Keller, P., Runz, H., Kuhl, S., Bertsch, T., von Bergmann, K., Hennerici, M., Beyreuther, K., and Hartmann, T., 2001, Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98: 5856–5861.PubMedCrossRefGoogle Scholar
  12. Frears, E.R., Stephens, D.J., Walters, C.E., Davies, H., and Austen, B.M., 1999, The role of cholesterol in the biosynthesis of β-amyloid. Neuroreport 10: 1699–1705.PubMedGoogle Scholar
  13. Gong, J.S., Kobayashi, M., Hayashi, H., Zou, K., Sawamura, N., Fujita, S.C., Yanagisawa, K., and Michikawa, M., 2002, Apolipoprotein E (ApoE) isoform-dependent lipid release from astrocytes prepared from human ApoE3 and ApoE4 knock-in mice. J. Biol. Chem. 277: 29919–29926.PubMedCrossRefGoogle Scholar
  14. Goodrum, J.F., 1990, Cholesterol synthesis is down-regulated during regeneration of peripheral nerve. J. Neurochem. 54: 1709–1715.PubMedCrossRefGoogle Scholar
  15. Gouras, G.K., Tsai, J., Naslund, J., Vincent, B., Edgar, M., Checler, F., Greenfield, J.P., Haroutunian, V., Buxbaum, J.D., Xu, H., Greengard, P., and Relkin, N.R., 2000, Intraneuronal Aβ42 accumulation in human brain. Am. J. Pathol. 156: 15–20.PubMedGoogle Scholar
  16. Gyure, K.A., Durham, R., Stewart, W.F., Smialek, J.E., and Troncoso, J.C., 2001, Intraneuronal Aβp-amyloid precedes development of amyloid plaques in Down’ssyndrome. Arch. Pathol. Lab. Med. 125: 489–492.PubMedGoogle Scholar
  17. Harris, J.R., 2002, In vitro fibrillogenesis of the amyloid β1-42 peptide: cholesterol potentiation and aspirin inhibition. Micron 33: 609–626.PubMedCrossRefGoogle Scholar
  18. Hayashi, H., Igbavboa, U., Hamanaka, H., Kobayashi, M., Fujita, S.C., Wood, W.G., and Yanagisawa, K., 2002, Cholesterol is increased in the exofacial leaflet of synaptic plasma membranes of human apolipoprotein E4 knock-in mice. Neuroreport 13: 383–386.PubMedCrossRefGoogle Scholar
  19. Igbavboa, U., Avdulov, N.A., Schroeder, F., and Wood, W.G., 1996, Increasing age alters transbilayer fluidity and cholesterol asymmetry in synaptic plasma membranes of mice. J. Neurochem. 66: 1717–1725.PubMedCrossRefGoogle Scholar
  20. Igbavboa, U., Avdulov, N.A., Chochina, S.V., and Wood, W.G., 1997, Transbilayer distribution of cholesterol is modified in brain synaptic plasma membranes of knockout mice deficient in the low-density lipoprotein receptor, apolipoprotein E, or both proteins. J. Neurochem. 69: 1661–1667.PubMedCrossRefGoogle Scholar
  21. Jarvik, G.P., Wijsman, E.M., Kukull, W.A., Schellenberg, G.D., Yu, C, and Larson, E.B., 1995, Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer’s disease: a case-control study. Neurology 45: 1092–1096.PubMedGoogle Scholar
  22. Ji, S.R., Wu, Y., and Sui, S.F., 2002, Cholesterol is an important factor affecting the membrane insertion of β-amyloid peptide (Aβ1-40), which may potentially inhibit the fibril formation. J. Biol. Chem. 277: 6273–6279.PubMedCrossRefGoogle Scholar
  23. Jick, H., Zornberg, G.L., Jick, S.S., Seshadri, S., and Drachman, D.A., 2000, Statins and the risk of dementia. Lancet 356: 1627–1631.PubMedCrossRefGoogle Scholar
  24. Kakio, A., Nishimoto, S.I., Yanagisawa, K., Kozutsumi, Y., and Matsuzaki, K., 2001, Cholesterol-dependent formation of GM1 ganglioside-bound amyloid-protein, an endogenous seed for Alzheimer amyloid. J. Biol Chem. 276: 24985–24990.PubMedCrossRefGoogle Scholar
  25. Kakio, A., Nishimoto, S., Yanagisawa, K., Kozutsumi, Y., and Matsuzaki, K., 2002, Interactions of amyloid β-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41: 7385–7390.PubMedCrossRefGoogle Scholar
  26. Kane, M.D., Lipinski, W.J., Callahan, M.J., Bian, F., Durham, R.A., Schwarz, R.D., Roher, A.E., and Walker, L.C., 2000, Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice. J. Nenrosci. 20:3606–3611.Google Scholar
  27. Kirsch, C., Eckert, G.P., and Mueller, W.E., 2002, Cholesterol attenuates the membrane perturbing properties of β-amyloid peptides. Amyloid 9: 149–159.PubMedGoogle Scholar
  28. Kivipelto, M., Helkala, E.L., Hanninen, T., Laakso, M.P., Hallikainen, M., Alhainen, K., Soininen, H., Tuomilehto, J., and Nissinen, A., 2001, Midlife vascular risk factors and late-life mild cognitive impairment: A population-based study. Neurology 56: 1683–1689.PubMedGoogle Scholar
  29. Kolsch, H., Lutjohann, D., Ludwig, M., Schulte, A., Ptok, U., Jessen, F., von Bergmann, K., Rao, M.L., Maier, W., and Heun, R., 2002, Polymorphism in the cholesterol 24S-hydroxylase gene is associated with Alzheimer’s disease. Mol. Psychiatry 7: 899–902.PubMedCrossRefGoogle Scholar
  30. Leibel, W.S., Firestone, L.L., Legler, D.C., Braswell, L.M., and Miller, K.W., 1987, Two pools of cholesterol in acetylcholine receptor-rich membranes from Torpedo. Biochim. Biophys. Acta. 897: 249–260.PubMedCrossRefGoogle Scholar
  31. Lutjohann, D., Breuer, O., Ahlborg, G., Nennesmo, I., Siden, A., and Diczfalusy, U., Bjorkhem, I., 1996, Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc. Natl. Acad Sci. USA 93: 9799–9804.PubMedCrossRefGoogle Scholar
  32. Mason, R.P., Shoemaker, W.J., Shajenko, L., Chambers, T.E., and Herbette, L.G., 1992, Evidence for changes in the Alzheimer’s disease brain cortical membrane structure mediated by cholesterol. Neurobiol. Aging 13: 413–419.PubMedCrossRefGoogle Scholar
  33. Matsuzaki, K., and Horikiri, C, 1999, Interactions of amyloid β-peptide (1-40) with ganglioside-containing membranes. Biochemistry 38: 4137–4142.PubMedCrossRefGoogle Scholar
  34. McLaurin, J., and Chakrabartty, A., 1996, Membrane disruption by Alzheimer β-amyloid peptides mediated through specific binding to either phospholipids or gangliosides. Implications for neurotoxicity. J. Biol. Chem. 271: 26482–26489.PubMedCrossRefGoogle Scholar
  35. McLaurin, J., Darabie, A. A., and Morrison, M.R., 2002, Cholesterol, a modulator of membrane-associated Aβ-fibrillogenesis. Ann. N. Y. Acad. Sci. 977: 376–383.PubMedGoogle Scholar
  36. Michikawa, M., and Yanagisawa, K., 1998, Apolipoprotein E4 induces neuronal cell death under conditions of suppressed de novo cholesterol synthesis. J. Neurosci. Res. 54: 58–67.PubMedCrossRefGoogle Scholar
  37. Michikawa, M., Fan, Q.W., Isobe, I., and Yanagisawa, K., 2000, Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture. J. Neurochem. 74: 1008–1016.PubMedCrossRefGoogle Scholar
  38. Mizuno, T., Haass, C., Michikawa, M., and Yanagisawa, K., 1998, Cholesterol-dependent generation of a unique amyloid β-protein from apically missorted amyloid precursor protein in MDCK cells. Biochim. Biophys. Acta. 1373: 119–130.PubMedCrossRefGoogle Scholar
  39. Mizuno, T., Nakata, M., Naiki, H., Michikawa, M., Wang, R., Haass, C, and Yanagisawa, K., 1999, Cholesterol-dependent generation of a seeding amyloid β-protein in cell culture. J. Biol. Chem. 274: 15110–15114.PubMedCrossRefGoogle Scholar
  40. Molander-Melin, M., Blennow, K., Bogdanovic, N., Dellheden, B., Mansson, J.E. and Fredman, P., 2003, Lipid analyses of human brain rafts. J. Neurochemistry 85: 34.CrossRefGoogle Scholar
  41. Mori, T., Paris, D., Town, T., Rojiani, A.M., Sparks, D.L., Delledonne, A., Crawford, F., Abdullah, L.I., Humphrey, J.A., Dickson, D.W., and Mullan, M.J., 2001, Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J. Neuropathol. Exp. Neurol. 60: 778–785.PubMedGoogle Scholar
  42. Naeim, F., and Walford, R.L., 1980, Disturbance of redistribution of surface membrane receptors on peripheral mononuclear cells of patients with Down’s syndrome and of aged individuals. J. Gerontol. 35: 650–655.PubMedGoogle Scholar
  43. Notkola, I.L., Sulkava, R., Pekkanen, J., Erkinjuntti, T., Ehnholm, C, Kivinen, P., Tuomilehto, J., and Nissinen, A., 1998, Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiology 17: 14–20.PubMedCrossRefGoogle Scholar
  44. Oshima, N., Morishima-Kawashima, M., Yamaguchi, H., Yoshimura, M., Sugihara, S., Khan, K., Games, D., Schenk, D., and Ihara, Y., 2001, Accumulation of amyloid β-protein in the low-density membrane domain accurately reflects the extent of β-amyloid deposition in the brain. Am. J. Pathol. 158: 2209–2218.PubMedGoogle Scholar
  45. Papassotiropoulos, A., Lutjohann, D., Bagli, M., Locatelli, S., Jessen, F., Rao, M.L., Maier, W., Bjorkhem, I., von Bergmann, K., and Heun, R., 2000, Plasma 24S-hydroxycholesterol: a peripheral indicator of neuronal degeneration and potential state marker for Alzheimer’s disease, Neuroreport 11: 1959–1962.PubMedGoogle Scholar
  46. Papassotiropoulos, A., Lutjohann, D., Bagli, M., Locatelli, S., Jessen, F., Buschfort, R., Ptok, U., Bjorkhem, I., von Bergmann, K., and Heun, R., 2002, 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J. Psychiatr. Res. 36: 27–32.PubMedCrossRefGoogle Scholar
  47. Papassotiropoulos, A., Streffer, J.R., Tsolaki, M., Schmid, S., Thal, D., Nicosia, F., Iakovidou, V., Maddalena, A., Lutjohann, D., Ghebremedhin, E., Hegi, T., Pasch, T., Traxler, M., Bruhl, A., Benussi, L., Binetti, G., Braak, H., Nitsch, R.M., and Hock, C, 2003, Increased brain β-amyloid load, phosphorylated tau, and risk of Alzheimer disease associated with an intronic CYP46 polymorphism. Arch. Neurol. 60: 29–35.PubMedCrossRefGoogle Scholar
  48. Pentchev, P.G., Vanier, M.T., Suzuki, K., and Patterson, M.C., 1995, Niemann-Pick disease, type C: a cellular cholesterol lipidosis, in: The metabolic and Molecular Basis of Inherited Disease (C. R Scriver, A. L. Beaudet, W.S. Sly, and D. Vall, eds), McGraw-Hill, New York. pp.2625–2640Google Scholar
  49. Poirier, J., Davignon, J., Bouthillier, D., Kogan, S., Bertrand, P., Gauthier, S., 1993, Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 342: 697–699.PubMedCrossRefGoogle Scholar
  50. Popplewell, P.Y., and Azhar, S., 1987, Effects of aging on cholesterol content and cholesterol-metabolizing enzymes in the rat adrenal gland. Endocrinology 121: 64–73.PubMedCrossRefGoogle Scholar
  51. Probst, A., Langui, D., Ipsen, S., Robakis, N., and Ulrich, J., 1991, Deposition of p/A4 protein along neuronal plasma membranes in diffuse senile plaques. Acta. Neuropathol. (Berl) 83: 21–29.CrossRefGoogle Scholar
  52. Puglielli, L., Tanzi, R.E., and Kovacs, D.M., 2003, Alzheimer’s disease: the cholesterol connection. Nat. Neurosci. 6: 345–351.PubMedCrossRefGoogle Scholar
  53. Refolo, L.M., Malester, B., LaFrancois, J., Bryant-Thomas, T., Wang, R., Tint, G.S., Sambamurti, K., Duff, K., and Pappolla, M.A., 2000, Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7: 321–331.PubMedCrossRefGoogle Scholar
  54. Refolo, L.M., Pappolla, M.A., LaFrancois, J., Malester, B., Schmidt, S.D., Thomas-Bryant, T., Tint, G.S., Wang, R., Mercken, M., Petanceska, S.S., and Duff, K.E., 2001, A cholesterol-lowering drug reduces β-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 8: 890–899.PubMedCrossRefGoogle Scholar
  55. Saito, Y., Suzuki, K., Nanba, E., Yamamoto, T., Ohno, K., and Murayama, S., 2002, Niemann-Pick type C disease: accelerated neurofibrillary tangle formation and amyloid β deposition associated with apolipoprotein E epsilon 4 homozygosity, Ann. Neurol. 52: 351–355.PubMedCrossRefGoogle Scholar
  56. Saunders, A.M., Strittmatter, W.J., Schmechel, D., George-Hyslop, P.H., Pericak-Vance, M.A., Joo, S.H., Rosi, B.L., Gusella, J.F., Crapper-MacLachlan, D.R., Growden, J., Alberts, M.J., Hulette, C., Crain, B., Goldgaber, D., and Roses, A.D., 1993, Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43: 1467–1472.PubMedGoogle Scholar
  57. Sawamura, N., Morishima-Kawashima, M., Waki, H., Kobayashi, K., Kuramochi, T., Frosch, M.P., Ding, K., Ito, M., Kim, T.W., Tanzi, R.E., Oyama, F., Tabira, T., Ando, S., and Ihara, Y., 2000, Mutant presenilin 2 transgenic mice. A large increase in the levels of Aβ 42 is presumably associated with the low density membrane domain that contains decreased levels of glycerophospholipids and sphingomyelin. J. Biol. Chem. 275: 27901–27908.PubMedGoogle Scholar
  58. Schonknecht, P., Lutjohann, D., Pantel, J., Bardenheuer, H., Hartmann, T., von Bergmann, K., Beyreuther, K., and Schroder, J., 2002, Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer’s disease compared to healthy controls. Neurosci. Lett. 324: 83–85.PubMedCrossRefGoogle Scholar
  59. Schroeder, F., Nemecz, G., Wood, W.G., Joiner, C., Morrot, G., Ayraut-Jarrier, M., and Devaux, P.F., 1991, Transmembrane distribution of sterol in the human erythrocyte,. Biochim. Biophys. Acta. 1066: 183–192.PubMedCrossRefGoogle Scholar
  60. Scott, R.B., Collins, J.M., and Hunt, P.A., 1994, Alzheimer’s disease and Down’ssyndrome: leukocyte membrane fluidity alterations. Mech. Ageing. Dev. 75: 1–10.PubMedCrossRefGoogle Scholar
  61. Simons, K., and Ikonen, E., 1997, Functional rafts in cell membranes. Nature 387: 569–572.PubMedCrossRefGoogle Scholar
  62. Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C.G., and Simons, K., 1998, Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. USA 95: 6460–6464.PubMedCrossRefGoogle Scholar
  63. Simons, M., Keller, P., Dichgans, J., and Schulz, J.B., 2001, Cholesterol and Alzheimer’s disease: is there a link? Neurology 57: 1089–1093.PubMedGoogle Scholar
  64. Soderberg, M., Edlund, C., Alafuzoff, I., Kristensson, K., and Dallner, G., 1992, Lipid composition in different regions of the brain in Alzheimer’s disease/senile dementia of Alzheimer’s type. J. Neurochem. 59: 1646–1653.PubMedCrossRefGoogle Scholar
  65. Sparks, D.L., Scheff, S.W., Hunsaker, J.C., 3rd, Liu, H., Landers, T., and Gross, D.R., 1994, Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp. Neurol. 126: 88–94.PubMedCrossRefGoogle Scholar
  66. Stahlberg, D., Angelin, B., and Einarsson, K., 1991, Age-related changes in the metabolism of cholesterol in rat liver microsomes. Lipids 26: 349–352.PubMedGoogle Scholar
  67. Strittmatter, W.J., Weisgraber, K.H., Huang, D.Y., Dong, L.M., Salvesen, G.S., Pericak-Vance, M., Schmechel, D., Saunders, A.M., Goldgaber, D., and Roses, A.D., 1993, Binding of human apolipoprotein E to synthetic amyloid β peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 90: 8098–8102.PubMedCrossRefGoogle Scholar
  68. Sugimoto, Y., Ninomiya, H., Ohsaki, Y., Higaki, K., Davies, J.P., Ioannou, Y.A., and Ohno, K., 2001, Accumulation of cholera toxin and GM1 ganglioside in the early endosome of Niemann-Pick C1-deficient cells. Proc. Natl. Acad. Sci. USA 98: 12391–12396.PubMedCrossRefGoogle Scholar
  69. Suzuki, K., Parker, C.C., Pentchev, P.G., Katz, D., Ghetti, B., D’Agostino, A.N., and Carstea, E.D., 1995, Neurofibrillary tangles in Niemann-Pick disease type C. Acta. Neuropathol. (Berl) 89: 227–238.Google Scholar
  70. Vance, J.E., Pan, D., Campenot, R.B., Bussiere, M., and Vance, D.E., 1994, Evidence that the major membrane lipids, except cholesterol, are made in axons of cultured rat sympathetic neurons. J. Neurochem. 62: 329–337.PubMedCrossRefGoogle Scholar
  71. Wahrle, S., Das, P., Nyborg, A.C., McLendon, C., Shoji, M., Kawarabayashi, T., Younkin, L.H., Younkin, S.G., and Golde, T.E., 2002, Cholesterol-dependent β-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9: 11–23.PubMedCrossRefGoogle Scholar
  72. Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G.G., and Siegel, G., 2000, Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57: 1439–1443.PubMedCrossRefGoogle Scholar
  73. Wood, W.G., Cornwell, M., and Williamson, L.S., 1989, High performance thin-layer chromatography and densitometry of synaptic plasma membrane lipids. J. Lipid Res. 30: 775–779.PubMedGoogle Scholar
  74. Wood, W.G., Schroeder, F., Avdulov, N.A., Chochina, S.V., and Igbavboa, U., 1999, Recent advances in brain cholesterol dynamics: transport, domains, and Alzheimer’s disease. Lipids 34: 225–234.PubMedCrossRefGoogle Scholar
  75. Yamaguchi, H., Maat-Schieman, M.L., van Duinen, S.G., Prins, F.A., Neeskens, P., Natte, R., and Roos, R.A., 2000, Amyloid β protein (Aβ) starts to deposit as plasma membrane-bound form in diffuse plaques of brains from hereditary cerebral hemorrhage with amyloidosis-Dutch type, Alzheimer disease and nondemented aged subjects. J. Neuropathol. Exp. Neurol. 59: 723–732.PubMedGoogle Scholar
  76. Yamazaki, T., Chang, T.Y., Haass, C., and Ihara, Y., 2001, Accumulation and aggregation of amyloid β-protein in late endosomes of Niemann-pick type C cells. J. Biol. Chem. 276: 4454–4460.PubMedCrossRefGoogle Scholar
  77. Yanagisawa, K., Odaka, A., Suzuki, N., and Ihara, Y., 1995, GM1 ganglioside-bound amyloid β-protein (Aβ): a possible form of preamyloid in Alzheimer’s disease. Nat. Med. 1: 1062–1066.PubMedCrossRefGoogle Scholar
  78. Yanagisawa, K., McLaurin, J., Michikawa, M., Chakrabartty, A., and Ihara, Y., 1997, Amyloid β-protein (Aβ) associated with lipid molecules: immunoreactivity distinct from that of soluble Aβ, FEBS Lett. 420: 43–46.PubMedCrossRefGoogle Scholar
  79. Yanagisawa, K., and Ihara, Y., 1998, GM1 ganglioside-bound amyloid β-protein in Alzheimer’s disease brain, Neurobiology of aging 19: 65–67.CrossRefGoogle Scholar
  80. Yip, C.M., Elton, E.A., Darabie, A.A., Morrison, M.R., and McLaurin, J., 2001, Cholesterol, a modulator of membrane-associated A β-fibrillogenesis and neurotoxicity, J. Mol. Biol. 311: 723–734.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Katsuhiko Yanagisawa
    • 1
  1. 1.National Institute for Longevity SciencesObuJapan

Personalised recommendations