Advertisement

The Protective Role of Vitamin E in Vascular Amyloid β-Mediated Damage

  • Francisco José Muñoz
  • Montserrat Solé
  • Mireia Coma
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 38)

Abstract

Amyloid β peptide (Aβ) accumulation produces the senile plaques in the brain parenchyma characteristic of Alzheimer’s Disease (AD) and the vascular deposits of Cerebral Amyloid Angiopathy (CAA). Oxidative stress is directly involved in Aβ-mediated cytotoxicity and antioxidants have been reported as cytoprotective in AD and CAA. Vitamin E has antioxidant and hydrophobic properties that render this molecule as the main antioxidant present in biological membranes, preventing lipid peroxidation, carbonyl formation and inducing intracellular modulation of cell signalling pathways. Accordingly, vascular damage produced by Aβ and prooxidant agents can be decreased or prevented by vitamin E. The protective effect of vitamin E against Aβ cytotoxicity in vascular cells in comparison to the neuronal system is reviewed in this chapter.

Key words

Amyloid β-peptide Cerebral Amyloid Angiopathy vitamin E vascular cells antioxidants oxidative stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Tanaka, M., Shiojima, I., Hiroi, Y., and Yazaki, Y., 1997, Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J. Clin. Invest. 100: 1813–1821.PubMedCrossRefGoogle Scholar
  2. Altura, B.M., Gebrewold, A., 1996, Alpha-tocopherol attenuates alcohol-induced cerebral vascular damage in rats: possible role of oxidants in alcohol brain pathology and stroke. Neurosci Lett. 220:207–210.PubMedCrossRefGoogle Scholar
  3. Aratri, E., Spycher, S.E., Breyer, I., Azzi, A., 1999, Modulation of alpha-tropomyosin expression by alpha-tocopherol in rat vascular smooth muscle cells. FEBS Lett. 447: 91–94.PubMedCrossRefGoogle Scholar
  4. Badger, A.M., 2000, Differential effects of SB 242235, a selective p38 mitogen-activated protein kinase inhibitor on IL-1 treated bovine and human cartilage/chondrocyte cultures. Osteoarthr. Cartil. 8: 434–443.PubMedCrossRefGoogle Scholar
  5. Ben Hamida, C., Doerflinger, N., Belal, S., Linder, C., Reutenauer, L., Dib, C., Gyapay, G., Vignal, A., Le Paslier, D., Cohen, D., Pandolfo, M., Mokini, V., Novelli, G., Hentati, F., Ben Hamida, M., Mandel, J. L., and Koenig, M., 1993, Localization of Friedreich ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nat. Genet. 5:195–200.PubMedCrossRefGoogle Scholar
  6. Behl, C., 2002, Oestrogen as a neuroprotective hormone. Nat. Neurosci. 3: 433–442.Google Scholar
  7. Behl, C., 2000, Vitamin E protects neurons against oxidative cell death in vitro more effectively than 17-beta estradiol and induces the activity of the transcription factor NF-kappaB,. J. Neural Transm., 107: 393–407.PubMedCrossRefGoogle Scholar
  8. Behl, C., Davis, J., Cole, G.M., and Schubert, D., 1992, Vitamin E protects nerve cells from amyloid beta protein toxicity. Biochem. Biophys. Res. Commun. 186: 944–950.PubMedCrossRefGoogle Scholar
  9. Behl, C., Davis, J., Lesley, R., and Schubert, D., 1994, Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817–827.PubMedCrossRefGoogle Scholar
  10. Behrens, A., Sibila, M., and Wagner, E.F., 1999, Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat. Genet. 21: 326–329.PubMedCrossRefGoogle Scholar
  11. Ben Hamida, C., Doerflinger, N., Belal, S., Linder, C., Reutenauer, L., Dib, C., Gyapay, G., Vignal, A., Le Paslier, D., Cohen, D., Pandolfo, M., Mokini, V., Novelli, G., Hentati, F., Ben Hamida, M., Mandel, J. L., and Koenig, M., 1993, Localization of Friedreich ataxia phenotype with selective vitamine deficiency to chromosome 8q by homozygosity mapping. Nat. Genet. 5: 195–200.PubMedCrossRefGoogle Scholar
  12. Benhar, M., Engelberg, D., and Levitzki, A., 2002, ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep. 3: 420–425.PubMedCrossRefGoogle Scholar
  13. Bondy, S.C., Guo-Ross, S.X., and Truong, A.T., 1988, Promotion of transition metal-induced reactive oxygen species formation by beta-amyloid. Brain Res. 799: 91–96.CrossRefGoogle Scholar
  14. Bonnefont, A.B., Muñoz, F.J., and Inestrosa, N.C., 1998, Estrogen protects neuronal cells from the cytotoxicity induced by acetylcholinesterase-amyloid complexes. FEBS Lett. 441: 220–224.PubMedCrossRefGoogle Scholar
  15. Bossy-Wetzel, E., Bakiri, L., and Yaniv, M., 1997, Induction of apoptosis by the transcription factor c-Jun. EMBO J. 16: 1695–1709.PubMedCrossRefGoogle Scholar
  16. Burdon, R.H., 1995, Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic. Biol. Med. 18: 775–794.PubMedCrossRefGoogle Scholar
  17. Calderón, F.H., Bonnefont, A., Muñoz, F.J., Fernandez, V., Videla, L.A., and Inestrosa, N.C., 1999, PC12 and neuro 2a cells have different susceptibilities to acetylcholinesterase-amyloid complexes, amyloid25–35 fragment, glutamate, and hydrogen peroxide. J. Neurosci. Res. 56: 620–631.PubMedCrossRefGoogle Scholar
  18. Calhoun, M.E., Burgermeister, P., Phinney, A.L., Stalder, M., Tolnay, M., Wiederhold, K.H., Abramowski, D., Sturchler-Pierrat, C., Sommer, B., Staufenbiel, M., and Jucker, M., 1999, Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc. Natl. Acad. Sci. USA. 96: 14088–14093.PubMedCrossRefGoogle Scholar
  19. Castaño, E.M., Prelli, F., Soto, C., Beavis, R., Matsubara, E., Shoji, M., and Frangione, B., 1996, The length of amyloid-beta in hereditary cerebral hemorrhage with amyloidosis, Dutch type. Implications for the role of amyloid-beta 1-42 in Alzheimer’s disease. J. Biol. Chem. 271:32185–32191.PubMedCrossRefGoogle Scholar
  20. Crawford, F., Suo, Z., Fang, C., and Mullan, M., 1998, Characteristics of the in vitro vasoactivity of beta-amyloid peptides. Exp. Neurol. 150: 159–168.PubMedCrossRefGoogle Scholar
  21. Crawford, F., Suo, Z., Fang, C., Sawar, A., Su, G., Arendash, G., and Mullan, M., 1997, The vasoactivity of A beta peptides. Ann. N. Y. Acad. Sci. 826: 35–46.PubMedGoogle Scholar
  22. Crossthwaite, A.J., Hasan, S., and Williams, R.J., 2002, Hydrogen peroxide-mediated phosphorylation of ERK1/2, Akt/PKB and JNK in cortical neurones: dependence on Ca(2+) and PI3-kinase. J. Neurochem. 80: 24–35.PubMedCrossRefGoogle Scholar
  23. Davis, J., and Van Nostrand, W.E., 1996, Enhanced pathologic properties of Dutch-type mutant amyloid beta-protein. Proc. Natl. Acad. Sci. USA. 93: 2996–3000.PubMedCrossRefGoogle Scholar
  24. De la Monte, S.M., Sohn, Y.K., Etienne, D., Kraft, J., and Wands, J.R., 2000, Role of aberrant nitric oxide synthase-3 expression in cerebrovascular degeneration and vascular-mediated injury in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 903: 61–71.PubMedCrossRefGoogle Scholar
  25. Evans, H.M., and Bishop, K.S., 1922, On the existence of a hitherto unrecognised dietary factor essential for reproduction. Science 56: 650–651.CrossRefPubMedGoogle Scholar
  26. Frackowiak, J., Mazur-Kolecka, B., Wisniewski, H.M., Potempska, A., Carroll, R.T., Emmerling, M.R., and Kim, K.S., 1995, Secretion and accumulation of Alzheimer’s beta-protein by cultured vascular smooth muscle cells from old and young dogs. Brain Res. 676: 225–230.PubMedCrossRefGoogle Scholar
  27. Frackowiak, J., Sukontasup, T., Potempska, A., and Mazur-Kolecka, B., 2004, Lysosomal deposition of Abeta in cultures of brain vascular smooth muscle cells is enhanced by iron. Brain Res. 1002: 67–75.PubMedCrossRefGoogle Scholar
  28. Frederikse, P.H., Garland, D., Zigler, J.S. Jr, and Piatigorsky, J., 1996, Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (Abeta) in mammalian lenses, and Abeta has toxic effects on lens epithelial cells. J. Biol. Chem. 271: 10169–10174.PubMedCrossRefGoogle Scholar
  29. Gabbita, S.P., Lovell, M.A., and Markesbery, W.R., 1998, Increased nuclear DNA oxidation in the brain in Alzheimer’s disease,. J. Neurochem. 71: 2034–2040.PubMedCrossRefGoogle Scholar
  30. Gass, P., and Herdegen, T., 1995, Neuronal expression of AP-1 proteins in excitotoxic neurodegenerative disorders and following nerve fiber lesions. Prog. Nenrobiol. 47: 257–290.CrossRefGoogle Scholar
  31. Gotto, A.M., 2003, Antioxidants, statins, and atherosclerosis. J. Am. Coll. Cardiol. 41: 1205–1210.PubMedCrossRefGoogle Scholar
  32. Grammas, P., Reimann-Philipp, U., and Wegiel, P.H., 2000, Cerebrovasculature-mediated neuronal cell death. Ann. N. Y. Acad. Sci. 903: 55–60.PubMedCrossRefGoogle Scholar
  33. Guan, Z.H., Buckman, S.Y., Pentland, A.P., Templeton, D.J., and Morrison, A.R., 1998, Induction of cyclo-oxygenase-2 by the activated MEKKl-/SEKl/MKK4-/p38 mitogen-activated protein kinase pathway. J. Biol. Chem. 273: 12901–12908.PubMedCrossRefGoogle Scholar
  34. Halliwell, B., and Gutteridge, J.M., 1984, Free radicals, lipid peroxidation, and cell damage. Lancet 2: 1095.PubMedCrossRefGoogle Scholar
  35. Hosomi, A., Arita, M., Sato, Y., Kiyose, C., Ueda, T., Igarashi, O., Arai, H., and Inoue, K., 1997, Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett. 409: 105–108.PubMedCrossRefGoogle Scholar
  36. Huang, X., Atwood, C.S., Hartshorn, M.A., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Cuajungco, M.P., Gray, D.N., Lim, J., Moir, R.D., Tanzi, R.E., and Bush, A.I., 1999, The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry. 38: 7609–7616.PubMedCrossRefGoogle Scholar
  37. Ichitani, Y., Okaichi, H., Yoshikawa, T., and Ibata, Y., 1992, Learning behaviour in chronic vitamin E-deficient and-supplemented rats: radial arm maze learning and passive avoidance response. Behav. Brain Res., 51: 157–164.PubMedGoogle Scholar
  38. Jialal, I., Devaraj, S., and Kaul, N., 2001, The effect of alpha-tocopherol on monocyte proatherogenie activity. J. Nutr., 131: 389S–394S.PubMedGoogle Scholar
  39. Kalaria, R.N., 1997, Cerebrovascular degeneration is related to amyloid-beta protein deposition in Alzheimer’s disease. Ann. N.Y.Acad.Sci. 826: 263–271.PubMedGoogle Scholar
  40. Kaltschmidt, B., Uherek, M., Volk, B., Baeuerle, P.A., and Kaltschmidt, C., 1997, Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc. Natl. Acad. Sci. USA. 94: 2642–2647.PubMedCrossRefGoogle Scholar
  41. Kawas, C., Resnick, S., Morrison, A., Brookmeyer, R., Corrada, M., Zonderman, A., Bacal, C., Lingle, D.D., and Metter, E., 1997, A prospective study of estrogen replacement therapy and the risk of developing Alzheimer’s disease: the Baltimore Longitudinal Study of Aging. Neurology. 48: 1517–1521.PubMedGoogle Scholar
  42. Kelly, J.F., Furukawa, K., Barger, S.W., Rengen, M.R., Mark, R.J., Blanc, E.M., Roth G.S., and Mattson, M.P., 1996, Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc. Natl. Acad. Sci. USA. 93: 6753–6758.PubMedCrossRefGoogle Scholar
  43. Kong, A.N., Yu, R., Lei, W., Mandlekar, S., Tan, T.H., and Ucker, D.S., 1998, Differential activation of MAPK and ICE/Ced-3 protease in chemical-induced apoptosis. The role of oxidative stress in the regulation of mitogen-activated protein kinases (MAPKs) leading to gene expression and survival or activation of caspases leading to apoptosis. Restor. Neurol. Neurosci. 12: 63–70.PubMedGoogle Scholar
  44. Koppal, T., Subramaniam, R., Drake, J., Prasad, M.R., Dhillon, H., and Butterfield, D.A., 1998, Vitamin E protects against Alzheimer’s amyloid peptide (25–35)-induced changes in neocortical synaptosomal membrane lipid structure and composition. Brain Res. 786: 270–273.PubMedCrossRefGoogle Scholar
  45. Lee, I.K., Koya, D., Ishi, H., Kanoh, H., and King, G.L., 1999, d-Alpha-tocopherol prevents the hyperglycemia induced activation of diacylglycerol (DAG)-protein kinase C (PKC) pathway in vascular smooth muscle cell by an increase of DAG kinase activity. Diabetes Res. Clin. Pract. 45: 183–190.PubMedCrossRefGoogle Scholar
  46. Levy, E., Carman, M.D., Fernandez-Madrid, I.J., Power, M.D., Lieberburg, I., Van Duinen, S.G., Bots, G.T., Luyendijk, W., and Frangione, B., 1990, Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248: 1124–1126.PubMedCrossRefGoogle Scholar
  47. Li-Weber, M., Weigand, M.A., Giaisi, M., Suss, D., Treiber, M.K., Baumann, S., Ritsou, E., Breitkreutz, R., and Krammer, P.H., 2002, Vitamin E inhibits CD95 ligand expression and protects T cells from activation-induced cell death. J. Clin. Invest. 110: 681–690.PubMedCrossRefGoogle Scholar
  48. Lo, Y.Y.C., Wong, J.M.S., and Cruz, T.F., 1996, Reactive oxygen species mediate cytokine activation of c-jun NH2-terminal kinases,. J. Biol. Chem. 271: 15703–15707.PubMedCrossRefGoogle Scholar
  49. Lockhart, B.P., Benicourt, C., Junien J.L., and Privat, A., 1994, Inhibitors of free radical formation fail to attenuate direct beta-amyloid25–35 peptide-mediated neurotoxicity in rat hippocampal cultures. J. Neurosci. Res. 39: 494–505.PubMedCrossRefGoogle Scholar
  50. Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L., and Markesbery, W.R., 1998, Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158: 47–52.PubMedCrossRefGoogle Scholar
  51. Maat-Schieman, M.L.C., Radder, C.M., van Duinen, S.G., Haan, J., and Roos, R.A.C., 1994, Hereditary cerebral haemorrhage with amyloidosis (Dutch): a model for congophilic plaque formation without neurofibrillary pathology. Acta Neuropathol, 88: 371–378.PubMedGoogle Scholar
  52. Maat-Schieman, M.L.C., van Duinen, S.G., Haan, J., and Roos, R.A.C., 1992, Morphology of cerebral plaque-like lesions in hereditary cerebral haemorrhage with amyloidosis (Dutch). Acta Neuropathol. 84: 674–679.PubMedCrossRefGoogle Scholar
  53. Mark, R.J., Hensley, K., Butterfield, D.A., and Mattson, M.P., 1995, Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15: 6239–6249.PubMedGoogle Scholar
  54. Mark, R.J., Pang, Z., Geddes, J.W., Uchida, K., and Mattson, M.P., 1997, Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J Neurosci. 17: 1046–1054.PubMedGoogle Scholar
  55. Martin-Nizard, F., Boullier, A., Fruchart, J.C., and Duriez, P., 1998, Alpha-tocopherol but not beta-tocopherol inhibits thrombin-induced PKC activation and endothelin secretion in endothelial cells. J. Cardiovasc. Risk. 5: 339–345.PubMedCrossRefGoogle Scholar
  56. Mattson, M.P., 1997, Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77: 1081–1132.PubMedGoogle Scholar
  57. Mattson, M.P., and Goodman, Y., 1995, Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving reactive oxygen species and calcium. Brain Res. 676: 219–224.PubMedCrossRefGoogle Scholar
  58. Mazur-Kolecka, B., Frackowiak, J., and Wisniewski, H.M., 1995, Apolipoproteins E3 and E4 induce, and transthyretin prevents accumulation of the Alzheimer’s beta-amyloid peptide in cultured vascular smooth muscle cells. Brain Res. 698: 217–222.PubMedCrossRefGoogle Scholar
  59. Mesulam, M.-M., Carson, K., Price, B., and Geula, C., 1992, Cholinesterases in the amyloid angiopathy of Alzheimer’s disease. Ann. Neurol. 31: 565–569.PubMedCrossRefGoogle Scholar
  60. Miranda, S., Opazo, C., Larrondo, L.F., Muñoz, F.J., Ruiz, F., Leighton, F., Inestrosa, N.C., 2000, The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer’s disease. Prog. Neurobiol. 62: 633–648.PubMedCrossRefGoogle Scholar
  61. Miyakawa, T., Katsuragi, S., Higuchi, Y., Yamashita, K., Kimura, T., Teraoka, K., Ono, T., and Ishizuka, K., 1997, Changes of microvessels in the brain with Alzheimer’s disease. Ann. N. Y. Acad. Sci. 826: 428–432.PubMedGoogle Scholar
  62. Mok, S.S., Turner, B.J., Beyreuther, K., Masters, C.L., Barrow, C.J., and Small, D.H., 2002, Toxicity of substrate-bound amyloid peptides on vascular smooth muscle cells is enhanced by homocysteine. Eur. J. Biochem. 269: 3014–3022PubMedCrossRefGoogle Scholar
  63. Morris, M.C., Beckett, L.A., Scherr, P.A., Hebert, L.E., Bennett, D.A., Field, T.S., and Evans, D.A., 1998, Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer Dis. Assoc. Disord. 12: 121–126.PubMedCrossRefGoogle Scholar
  64. Muñoz, F.J., Opazo, C., Gil-Gomez, G., Tapia, G., Fernandez, V., Valverde, M.A., Inestrosa, N.C., 2002, Vitamin E but not 17beta-estradiol protects against vascular toxicity induced by beta-amyloid wild type and the Dutch amyloid variant. J. Neurosci. 22: 3081–3089.PubMedGoogle Scholar
  65. Mazur-Kolecka, B., Kowal, D., Sukontasup, T., Dickson, D., and Frackowiak, J., 2004, The effect of oxidative stress on amyloid precursor protein processing in cells engaged in ß-amyloidosis is related to apolipoprotein E genotype. Acta Neuropathol. (Berl.) In press.Google Scholar
  66. Naiki, H., Hasegawa, K., Yamaguchi, I., Nakamura, H., Gejyo, F., and Nakakuki, K., 1998, Apolipoprotein E and antioxidants have different mechanisms of inhibiting Alzheimer’s beta-amyloid fibril formation in vitro. Biochemistry 37: 17882–17889.PubMedCrossRefGoogle Scholar
  67. Nunomura, A., Perry, G., Hirai, K., Aliev, G., Takeda, A., Chiba, S., and Smith, M.A., 1999, Neuronal RNA oxidation in Alzheimer’s disease and Down’s syndrome. Ann. N. Y. Acad. Sci. 893: 362–364.PubMedCrossRefGoogle Scholar
  68. Okazawa, H., and Estus, S., 2002, The JNK/c-Jun cascade and Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 17: 79–88.PubMedCrossRefGoogle Scholar
  69. Pappolla, M.A., Sos, M., Omar, R.A., Bick, R.J., Hickson-Bick, D.L., Reiter, R.J., Efthimiopoulos, S., and Robakis, N.K., 1997, Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J. Neurosci. 17: 1683–1690.PubMedGoogle Scholar
  70. Perna, A.F., Ingrosso, D., and De Santo, N.G., 2003, Homocysteine and oxidative stress, Amino Acids, 25:409–417.PubMedCrossRefGoogle Scholar
  71. Perly, B., Smith, I.C., Hughes, L., Burton, G.W., and Ingold, K.U., 1985, Estimation of the location of natural alpha-tocopherol in lipid bilayers by 13C-NMR spectroscopy. Biochim. Biophys. Acta. 819:131–135.PubMedCrossRefGoogle Scholar
  72. Piette, J., Piret, B., Bonizzi, G., Schoonbroodt, S., Merville, M.P., Legrand-Poels, S., and Bours, V., 1997, Multiple redox regulation in NF-kappa beta transcription factor activation. J. Biol. Chem. 378: 1237–1245.Google Scholar
  73. Pike, C.J., Ramezan-Arab, N., and Cotman, C.W., 1997, Beta-amyloid neurotoxicity in vitro: evidence of oxidative stress but not protection by antioxidants. J. Neurochem. 69: 1601–1611.PubMedCrossRefGoogle Scholar
  74. Podmore, I.D., Griffiths, H.R., Herbert, K.E., Mistry, N., Mistry, P., and Lunec, J., 1998, Vitamin C exhibits pro-oxidant properties. Nature 392: 559.PubMedCrossRefGoogle Scholar
  75. Pratico, D., Tangirala, R.K., Rader, D.J., Rokach, J., and Fitzgerald, G.A., 1998, Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nat. Med. 4: 1189–1192.PubMedCrossRefGoogle Scholar
  76. Qin, F., Shite, J., and Liang, C., 2003, Antioxidants attenuate myocyte apoptosis and improve cardiac function in CHF: association with changes in MAPK pathways. Am. J. Physiol. Heart Circ. Physiol. 285: 822–832.Google Scholar
  77. Ricciarelli, R., Tasinato, A., Clement, S., Ozer, N.K., Boscoboinik, D., and Azzi, A., 1998, alpha-Tocopherol specifically inactivates cellular protein kinase C alpha by changing its phosphorylation state. Biochem. J. 334: 243–249.PubMedGoogle Scholar
  78. Robbesyn, F., Garcia, V., Auge, N., Vieira, O., Frisach, M.F., Salvayre, R., and Negre-Salvayre, A., 2003, HDL counterbalance the proinflammatory effect of oxidized LDL by inhibiting intracellular reactive oxygen species rise, proteasome activation, and subsequent NF-kappaB activation in smooth muscle cells. FASEB J. 17: 743–745.PubMedGoogle Scholar
  79. Sano, M., Ernesto, C., Thomas, R.G., Klauber, M.R., Schafer, K., Grundman, M., Woodbury, P., and Growdon, J., 1997, A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N. Engl. J. Med. 336: 1216–1222.PubMedCrossRefGoogle Scholar
  80. Savage, M.J., Lin, Y.G., Ciallella, J.R., Flood, D.G., and Scott, R.W., 2002, Activation of c-Jun N-terminal kinase and p38 in an Alzheimer’s disease model is associated with amyloid deposition. J. Neurosci. 22: 3376–3385.PubMedGoogle Scholar
  81. Schmechel, D.E., Goldgaber, D., Burkhart, D.S., Gilbert, J.R., Gadjuseck, D.C., and Roses, A.D., 1988, Cellular localization of messenger RNA encoding amyloid-beta-protein in normal tissue and in Alzheimer disease. Alz. Dis. Assoc. Dis. 2: 96–111.CrossRefGoogle Scholar
  82. Seshadri, S., Beiser, A., Selhub, J., Jacques, P.F., Rosenberg, I.H., D’Agostino, R.B., Wilson, P.W., and Wolf, P.A., 2002, Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 346: 476–483.PubMedCrossRefGoogle Scholar
  83. Shoji, M., Hirai, S., Harigaya, Y., Kawarabayashi, T., and Yamaguchi, H., 1990, The amyloid beta-protein precursor is localized in smooth muscle cells of leptomeningeal vessels. Brain Res. 530: 113–116.PubMedCrossRefGoogle Scholar
  84. Smith, M.A., Richey Harris, P.L., Sayre, L.M., Beckman, J.S., and Perry, G., 1997, Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci. 17: 2653–2657.PubMedGoogle Scholar
  85. Snow, A.D., Mar, H., Nochlin, D., Kimata, K., Kato, M., Suzuki, S., Hassell, J., and Wight, T.N., 1988, The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer’s disease,. Am. J. Pathol. 133: 456–463.PubMedGoogle Scholar
  86. Stadtman, E.R., 1990, Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic. Biol. Med. 9: 315–325.PubMedCrossRefGoogle Scholar
  87. Steinberg, D., 1995, Clinical trials of antioxidants in atherosclerosis: are we doing the right thing? Lancet 346: 36–38.PubMedCrossRefGoogle Scholar
  88. Suo, Z., Su, G., Placzek, A., Kundtz, A., Humphrey, J., Crawford, F., and Mullan, M., 2000, A beta vasoactivity in vivo. Ann. N. Y. Acad. Sci. 903: 156–163.PubMedCrossRefGoogle Scholar
  89. Tagliavini, F., Ghiso, J., Timmers, W.F., Giaccone, G., Bugiani, O., and Frangione, B., 1990, Coexistence of Alzheimer’s amyloid precursor protein and amyloid protein in cerebral vessel walls. Lab. Invest. 62: 761–767.PubMedGoogle Scholar
  90. Tamagno, E., Bardini, P., Obbili, A., Vitali, A., Borghi, R., Zaccheo, D., Pronzato, M.A., Danni, O., Smith, M.A., Perry, G., and Tabaton, M., 2002, Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobioi Dis. 10: 279–288.CrossRefGoogle Scholar
  91. Tang, M.X., Jacobs, D., Stern, Y., Marder, K., Schofield, P., Gurland, B., Andrews, H., and Mayeux, R., 1996, Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 348: 429–432.PubMedCrossRefGoogle Scholar
  92. Thomas, T., McLendon, C., Sutton, E.T., and Thomas, G., 1997, Beta-Amyloid-induced cerebrovascular endothelial dysfunction. Ann. N. Y. Acad. Sci. 826: 447–451.PubMedGoogle Scholar
  93. Thomas, T., Sutton, E.T., Hellermann, A., and Price, J.M., 1997, Beta-amyloid-induced coronary artery vasoactivity and endothelial damage. J. Cardiovasc. Pharmacol. 30: 517–522.PubMedCrossRefGoogle Scholar
  94. Timmers, W.F., Tagliavini, F., Haan, J., and Frangione, B., 1990, Parenchymal preamyloid and amyloid deposits in the brains of patients with hereditary cerebral hemorrhage with amyloidosis-Dutch type. Neurosci. Lett., 118: 223–226.PubMedCrossRefGoogle Scholar
  95. Troy, C.M., Rabacchi, S.A., Xu, Z., Maroney, A.C., Connors, T.J., Shelanski, M., L., and Greene, L.A., 2001, Beta-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation, J. Neurochem. 77:157–164.PubMedCrossRefGoogle Scholar
  96. Turner, N.A., Xia, F., Azhar, G., Zhang, X., Liu, L., and Wei, J., 1998, Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J.Mol.Cell Cardiol. 30: 1789–1801.PubMedCrossRefGoogle Scholar
  97. Uchihara, T., Akiyama, H., Kondo, H., and Ikeda, K., 1997, Activated microglial cells are colocalized with perivascular deposits of amyloid-beta protein in Alzheimer’s disease brain. Stroke 28: 1948–1950.PubMedGoogle Scholar
  98. Uemura, M., Manabe, H., Yoshida, N., Fujita, N., Ochiai, J., Matsumoto, N., Takagi, T., Naito, Y., and Yoshikawa, T., 2002, Alpha-tocopherol prevents apoptosis of vascular endothelial cells via a mechanism exceeding that of mere antioxidation. Eur. J. Pharmacol. 456: 29–37.PubMedCrossRefGoogle Scholar
  99. Van Dorpe, J., Smeijers, L., Dewachter, I., Nuyens, D., Spittaels, K., Van Den Haute, C., Mercken, M., Moechars, D., Laenen, I., Kuiperi, C., Bruynseels, K., Tesseur, I., Loos, R., Vanderstichele, H., Checler, F., Sciot, R., Van Leuven, F., 2000, Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the london mutant of human APP in neurons. Am. J. Pathol. 157: 1283–1298.PubMedGoogle Scholar
  100. Van Duinen, S.G., Maat-Schieman, M.L., Bruijn, J.A., Haan, J., and Roos, R.A., 1995, Cortical tissue of patients with hereditary cerebral hemorrhage with amyloidosis (Dutch) contains various extracellular matrix deposits. Lab. Invest. 73: 183–189.PubMedGoogle Scholar
  101. Vatassery, G.T., 1992, Vitamin E. Neurochemistry and implications for neurodegeneration in Parkinson’s disease. Ann. N. Y. Acad. Sci. 669: 97–109PubMedCrossRefGoogle Scholar
  102. Vehmas, A.K., Kawas, C.H., Stewart, W.F., and Troncoso, J.C., 2003, Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol. Aging 24: 321–331.PubMedCrossRefGoogle Scholar
  103. Verbeek, M.M., Otte-Holler, I., Veerhuis, R., Ruiter, D.J., and De Waal, R.M., 1998, Distribution of A-beta-associated proteins in cerebrovascular amyloid of Alzheimer’s disease. Acta Neuropathol. (Berl) 96: 628–636.CrossRefGoogle Scholar
  104. Villacorta, L., Graca-Souza, A.V., Ricciarelli, R., Sing., J.M., and Azzi, A., 2003, Alpha-tocopherol induces expression of connective tissue growth factor and antagonizes tumor necrosis factor-alpha-mediated downregulation in human smooth muscle cells. Circ. Res. 92: 104–110.PubMedCrossRefGoogle Scholar
  105. Vinters, H.V., Pardrigde, W.M., Secor, D.L., and Ishii, N., 1988, Immunohistochemical study of cerebral amyloid angiopathy. Am. J. Pathol. 133: 150–162.PubMedGoogle Scholar
  106. Vollgraf, U., Wegner, M., and Richter-Landsberg, C., 1999 Activation of AP-1 and Nuclear Factor-kb transcription factors is involved in hydrogen peroxide-induced apoptotic cell death of oligodendrocytes, J. Neurochem., 73: 2501–2509.PubMedCrossRefGoogle Scholar
  107. Wang, S., Kotamraju, S., Konorev, E., Kalivendi, S., Joseph, J., and Kalyanaraman, B., 2002, Activation of nuclear factor-kappaB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide, Biochem. J., 367: 729–740.PubMedCrossRefGoogle Scholar
  108. Weller, R.O., Massey, A., Newman, T.A., Hutchings, M., Kuo, Y.M., and Roher, A.E., 1998, Amyloid β accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease, Am. J. Pathol., 153: 725–733.PubMedGoogle Scholar
  109. Wisniewski, T., Ghiso, J., and Frangione, B., 1991, Peptides homologous to the amyloid protein of Alzheimer’s disease containing a glutamine for glutamic acid substitution have accelerated amyloid fibril formation, Biochem. Biophys. Res. Commun., 179: 1247–54.PubMedCrossRefGoogle Scholar
  110. Wisniewski, H.M., and Wegiel, J., 1994, Beta-amyloid formation by myocytes of leptomeningeal vessels, Acta Neuropathol. (Berl), 87: 233–241.Google Scholar
  111. Wisniewski, H.M., Wegiel, J., Vorbrodt, A.W., Mazur-Kolecka, B., and Frackowiak, J., 2000, Role of perivascular cells and myocytes in vascular amyloidosis, Ann.N.Y.Acad. Sci., 903: 6–18.PubMedCrossRefGoogle Scholar
  112. Wisniewski, H.M., Wegiel, J., Wang, K.C., and Lach, B., 1992, Ultrastructural studies of the cells forming amyloid in the cortical vessel wall in Alzheimer’s disease, Acta Neuropathol. (Berl), 84: 117–127.CrossRefGoogle Scholar
  113. Yallampalli, S., Micci, M.A., and Taglialatela, G., 1998, Ascorbic acid prevents beta-amyloid-induced intracellular calcium increase and cell death in PC12 cells. Neurosci. Lett., 251:105–108.PubMedCrossRefGoogle Scholar
  114. Yamada, K., Tanaka, T., Han, D., Senzaki, K., Kameyama, T., and Nabeshima, T., 1999, Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1-42)-induced learning and memory deficits in rats: implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo, Eur. J. Neurosci., 11: 83–90.PubMedCrossRefGoogle Scholar
  115. Yin, K.J., Lee, J.M., Chen, S.D., Xu, J., and Hsu, C.Y., 2002, Amyloid-beta induces Smac release via AP-l/Bim activation in cerebral endothelial cells, J. Neurosci., 22: 9764–9770.PubMedGoogle Scholar
  116. Zhang, W.W., Lempessi, H., and Olsson, Y., 1998, Amyloid angiopathy of the human brain: immunohistochemical studies using markers for components of extracellular matrix, smooth muscle actin and endothelial cells, Acta Neuropathol. (Berl), 96: 558–563.CrossRefGoogle Scholar
  117. Zhu, X., Lee, H.G., Raina, A.K., Perry, G., and Smith, M.A., 2002, The role of mitogen-activated protein kinase pathways in Alzheimer’s disease, Neurosignals, 11: 270–281.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Francisco José Muñoz
    • 1
  • Montserrat Solé
    • 1
  • Mireia Coma
    • 1
  1. 1.Unitat de Senyalització Cel lular, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra (UPF)BarcelonaSpain

Personalised recommendations