The Non-Amyloidogenic Pathway: Structure and Function of α-Secretases

  • Elżbieta Kojro
  • Falk Fahrenholz
Part of the Subcellular Biochemistry book series (SCBI, volume 38)


The amyloid cascade hypothesis is the most accepted explanation for the pathogenesis of Alzheimer’s disease (AD). APP is the precursor of the amyloid β peptide (Aβ), the principal proteinaceous component of amyloid plaques in brains of Alzheimer’s disease patients. Proteolytic cleavage of APP by the α-secretase within the Aβ sequence precludes formation of amyloidogenic peptides and leads to a release of soluble APPsα which has neuroprotective properties. In several studies, a decreased amount of APPsα in the cerebrospinal fluid of AD patients has been observed. Three members of the ADAM family (a disintegrin and metalloproteinase) ADAM-10, ADAM-17 (TACE) and ADAM-9 have been proposed as α-secretases. We review the evidence for each of these enzymes acting as a physiologically relevant α-secretase. In particular, we focus on ADAM-10, which recently was shown in a transgenic mouse model for AD, to act as an α-secretase in vivo. We also discuss the pharmacological up-regulation of α-secretases as a possible therapeutic treatment for AD.

Key words

α-secretase non-amyloidogenic pathway Alzheimer’s disease ADAM-9 ADAM-10 ADAM-17 cholesterol G-protein-coupled receptors acetyl choline esterase inhibitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anders, A., Gilbert, S., Garten, W., Postina, R., Fahrenholz, F., 2001, Regulation of the alpha-secretase ADAM-10 by its prodomain and proprotein convertases. FASEB J., 15:1837–1839.PubMedGoogle Scholar
  2. Asai, M., Hattori, C., Szabo, B., Sasagawa, N., Maruyama, K., Tanuma, S., Ishiura, S., 2003, Putative function of ADAM-9, ADAM-10, and ADAM-17 as APP alpha-secretase. Biochem. Biophys. Res. Commun., 301:231–5.PubMedCrossRefGoogle Scholar
  3. Arribas, J., Coodly, L., Vollmer, P., Kishimoto, T. K., Rose-John, S., Massague, J., 1996, Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J. Biol. Chem., 271:11376–82.PubMedCrossRefGoogle Scholar
  4. Avramovich, Y., Amit, T., Youdim, M. B., 2002, Non-steroidal anti-inflammatory drugs stimulate secretion of non-amyloidogenic precursor protein. J. Biol. Chem. 277:31466–31473.PubMedCrossRefGoogle Scholar
  5. Bayer, T. A., Schafer, S., Simons, A., Kemmling, A., Kamer, T., Tepests, R., Eckert, A., Schussel, K., Eikenberg, O., Sturchler-Pierrat, C., Abramowski, D., Staufenbiel, M., Multhaup, G., 2003, Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc. Natl. Acad. Sci. USA 100:14187–14192.PubMedCrossRefGoogle Scholar
  6. Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack. J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan. S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J., Cerretti, D. P., 1997, A metalloproteinase disintegrin that releases tumour-necrosis factoralpha from cells. Nature 385:729–33.PubMedCrossRefGoogle Scholar
  7. Borchardt, T., Camakaris, J., Cappai, R., Masters, C. L., Beyreuther, K., Multhaup, G., 1999, Copper inhibits beta-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion. Biochem. J. 344:461–467.PubMedCrossRefGoogle Scholar
  8. Brou, C., Logeat, F., Gupta, N., Bessia, C., LeBail, O., Doedens, J. R., Cumano, A., Roux, P., Black, R. A., Israel, A., 2000, A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol.Cell 5:207–16.PubMedCrossRefGoogle Scholar
  9. Buxbaum, J. D., Liu, K.-N., Luo, Y., Slack. J. L., Stocking, K. L., Peschon, J. J., Johnson, R. S., Castner, B. J., Cerretti, D. P., Black, R., 1998, Evidence that tumor necrosis factor converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273:27765–67.PubMedCrossRefGoogle Scholar
  10. Chantry, A., Gregson, N. A., Glynn, P., 1989, A novel metalloproteinase associated with brain myelin membranes. Isolation and characterization. J. Biol. Chem. 264:21603–7.PubMedGoogle Scholar
  11. Chantry, A., Glynn, P., 1990, A novel metalloproteinase originally isolated from brain myelin membranes is present in many tissues. Biochem J. 268:245–8.PubMedGoogle Scholar
  12. Colciaghi, F., Borroni, B., Pastorino, L., Marcello, E., Zimmermann, M., Cattabeni, F., Padovani, A., Di Luca, M., 2002, α-Secretase ADAM-10 as well as αAPPs is reduced in platelets and CSF of Alzheimer disease patients. Mol. Med. 8:67–74.PubMedGoogle Scholar
  13. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., Pericak-Vance, M. A., 1993, Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–3.PubMedCrossRefGoogle Scholar
  14. Cordy, J.M., Hussain, I., Dingwall, C., Hooper, N.M., Turner, A.J., 2003, Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 100:11735–40.PubMedCrossRefGoogle Scholar
  15. Dallas, D. J., Genever, P. G., Patton, A. J., Millichip, M.I., McKie, N., Skerry, T. M., 1999, Localization of ADAM-10 and Notch receptors in bone. Bone 25: 9–15.PubMedCrossRefGoogle Scholar
  16. De Strooper, B., Umans, L., Van Leuven, F., Van Den Berghe, H., 1993, Study of the synthesis and secretion of normal and artificial mutants of murine amyloid precursor protein (APP): cleavage of APP occurs in a late compartment of the default secretion pathway. J. Cell Biol. 121:295–304.PubMedCrossRefGoogle Scholar
  17. Ehehalt, R., Keller, P., Haass, C., Thiele, C., Simons, K., 2003, Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell. Biol. 160:113–23.PubMedCrossRefGoogle Scholar
  18. Endres, K., Anders, A., Kojro, E., Gilbert, S., Fahrenholz, F., Postina, R., 2003, Tumor necrosis factoralpha converting enzyme is processed by proprotein-convertases to its mature form which is degraded upon phorbol ester stimulation. Ear. J. Biochem. 270:2386–93.CrossRefGoogle Scholar
  19. Fambrough, D., Pan, D., Rubin, G. M., Goodman, C. S., 1996, The cell surface metalloprotease/disintegrin Kuzbanian is required for axonal extension in Drosophila. Proc. Natl. Acad. Sci. USA 93:13233–13238.PubMedCrossRefGoogle Scholar
  20. Fassbender, K., Simons, M., Bergmann, C., Stroick, M., Lutjohann, D., Keller, P., Runz, H., Kuhl, S., Bertsch, T., von Bergmann, K., Hennerici, M., Beyreuther, K., Hartmann, T., 2001, Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 98:5856–61.PubMedCrossRefGoogle Scholar
  21. Fisher, A., Pittel, Z., Haring, R., Bar-Ner, N., Kliger-Spatz, M., Natan, N., Egozi, I., Sonego, H., Marcovitch, I., Brandeis, R., 2003, M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer’s disease: implications in future therapy. J. Mol. Neurosci. 20:349–356.PubMedCrossRefGoogle Scholar
  22. Friedhoff, L. T., Cullen, E. I., Geoghagen, N. S., Buxbaum, J. D., 2001, Treatment with controlled-release lovastatin decreases serum concentrations of human beta-amyloid (A beta) peptide. Int. J. Neuropsychopharmacol. 4:127–30.PubMedCrossRefGoogle Scholar
  23. Furukawa, K., Sopher, B. L., Rydel, R., Begley, J. G., Pham, D. G., Martin, G. M., Fox, M., Mattson, M. P., 1996, Increased activity-regulating and neuroprotective efficacy of α-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J. Neurochem. 67:1882–1896.PubMedCrossRefGoogle Scholar
  24. Garton, K. J., Gough, P. J., Blobel, C. P., Murphy, G., Greaves, D. R., Dempsey, P. J., Raines, E. W., 2001, Tumor necrosis factoralpha-converting enzyme (ADAM-17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. 276:37993–8001.PubMedGoogle Scholar
  25. Gouras, G. K., Xu, H., Gross, R. S., Greenfield, J. P., Hai, B., Wang, R., Greengard, P., 2000, Testosterone reduces neuronal secretion of Alzheimer’s beta-amyloid peptides. Proc. Natl. Acad. Sci. USA 97:1202–1205.PubMedCrossRefGoogle Scholar
  26. Gutwein, P., Mechtersheimer, S., Riedle, S., Stoeck, A., Gast, D., Joumaa, S., Zentgraf, H., Fogel, M., Altevogt, D. P., 2003, ADAM 10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. FASEB J. 17:292–4.PubMedGoogle Scholar
  27. Haass, C., Selkoe, D. J., 1993, Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell. 75:1039–1042.PubMedCrossRefGoogle Scholar
  28. Haass, C., Koo, E. H., Mellon, A., Hung, A. Y., Selkoe, D. J., 1992, Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357:500–503.PubMedCrossRefGoogle Scholar
  29. Hartmann, D., De Strooper, B., Serneels, L., Craessaerts, K., Herreman, A., Annaert, W., Umans, L., Lubke, T., Lena, I. A., von Figura, K., Saftig, P., 2002, The disintegrin/metalloprotease ADAM-10 is essential for Notch signalling but not for α-secretase activity in flbroblasts. Hum. Mol. Genet. 11:2615–2624.PubMedCrossRefGoogle Scholar
  30. Hattori, M. et al., 2000, Regulated cleavage of a contact-mediated axon repellent. Science 289:1360–1365.PubMedCrossRefGoogle Scholar
  31. Hotoda, N., Koike, H., Sasagawa, N., Ishiura, S., 2002, A secreted form of human ADAM-9 has an alpha-secretase activity for APP. Biochem. Biophys. Research. Commun. 293:800–5.CrossRefGoogle Scholar
  32. Howard, L., Lu, X., Mitchell, S., Griffiths, S., Glynn, P., 1996, Molecular cloning of MADM: a catalytically active mammalian disintegrin-metalloprotease expressed in various cell types. Biochem. J. 317:45–50.PubMedGoogle Scholar
  33. Hundhausen, C., Misztela, D., Berkhout, T. A., Broadway, N., Saftig, P., Reiss, K., Hartmann, D., Fahrenholz, F., Postina, R., Matthews, V., Kallen, K. J., Rose-John, S., Ludwig, A., 2003, The disintegrin-like metalloproteinase ADAM-10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 102:1186–95.PubMedCrossRefGoogle Scholar
  34. Ikezu, T., Trapp, B. D., Song, K. S., Schlegel, A., Lisanti, M. P., Okamoto, T., 1998, Caveolae, plasma membrane microdomains for alpha-secretase-mediated processing of the amyloid precursor protein. J. Biol. Chem. 273:10485–10495.PubMedCrossRefGoogle Scholar
  35. Izumi, Y., Hirata, M., Hasuwa, H., Iwamoto, R., Umata, T., Miyado, K., Tamai, Y., Kurisaki, T., Sehara-Fujisawa, A., Ohno, S., Mekada, E., 1998, A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J. 17:7260–72.PubMedCrossRefGoogle Scholar
  36. Jaffe, A. B., Toran-Allerand, C. D., Greengard, P., Gandy, S. E., 1994, Estrogen regulates metabolism of Alzheimer amyloid beta precursor protein. J. Biol. Chem. 269:13065–13068.PubMedGoogle Scholar
  37. Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., Drachman, D. A., 2000, Statins and the risk of dementia Lancet 356:1627–31.PubMedCrossRefGoogle Scholar
  38. Jolly-Tornetta, C., Gao, Z. Y., Lee, V. M., Wolf, B. A., 1998, Regulation of amyloid precursor protein secretion by glutamate receptors in human Ntera 2 neurons. J. Biol. Chem. 273:14015–14021.PubMedCrossRefGoogle Scholar
  39. Kang, J., Lemaire, H. G., Unterbeck, A., Album, L. M., Masters, C. L., Grzeshik, K. G., Multhaup, G., Beyreuther, K., Müller-Hil, B., 1987, The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell surface receptor. Nature 325:733–736.PubMedCrossRefGoogle Scholar
  40. Koike, H., Tomioka, S., Sorimachi, H., Saido, T. C., Maruyama, K., Okuyama, A., Fujisawa-Sehara, A., Ohno, S., Suzuki, K.; Ishiura, S., 1999, Membrane-anchoredmetalloprotease MDC9 has an alpha-secretase activity responsible for processing the amyloid precursor protein. Biochem. J. 343: 371–375.PubMedCrossRefGoogle Scholar
  41. Kojro, E., Gimpl, G., Lammich, S., Marz, W., Fahrenholz, F., 2001, Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM-10. Proc. Natl. Acad. Sci. USA 98: 5815–20.PubMedCrossRefGoogle Scholar
  42. Kozikowski, A. P., Nowak, I., Petukhov, P. A., Etcheberrigaray, R., Mohamed, A., Tan, M., Lewin, N., Hennings, H., Pearce, L. L., Blumberg, P. M., 2003, New amide-bearing benzolactam-based protein kinase C modulators induce enhanced secretion of the amyloid precursor protein metabolite sAPPalpha. J. Med. Chem. 46: 364–373.PubMedCrossRefGoogle Scholar
  43. Kuentzel, S. L., Ali, S. M., Altman, R. A., Greenberg, B. D., Raub, T. J., 1993, The Alzheimer beta-amyloid protein precursor/protease nexin-II is cleaved by secretase in a trans-Golgi secretory compartment in human neuroglioma cells. Biochem. J. 295: 367–378.PubMedGoogle Scholar
  44. Kuo, Y. M., Emmerling, M. R., Bisgaier, C. L., Essenburg, A. D., Lampert, H. C., Drumm, D., Roher, A. E., 1998, Elevated low-density lipoprotein in Alzheimer’s disease correlates with brain abeta 1-42 levels. Biochem. Biophys. Res. Commun. 252: 711–5.PubMedCrossRefGoogle Scholar
  45. Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C. und Fahrenholz, F., 1999, Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA 96: 3922–3927.PubMedCrossRefGoogle Scholar
  46. Lannfelt, L., Basun, H., Wahlund, L. O., Rowe, B. A., Wagner, S. L., 1995, Decreased alpha-secretase-cleaved amyloid precursor protein as a diagnostic marker for Alzheimer’s disease. Nature Med. 1: 829–832.PubMedCrossRefGoogle Scholar
  47. Leissring, M. A., Farris, W., Chang, A. Y., Walsh, D. M., Wu, X., Sun, X., Frosch, M. P., Selkoe, D. J., 2003, Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40: 1087–1093.PubMedCrossRefGoogle Scholar
  48. Lin, L., Georgievska, B., Mattsson, A., Isacson, O., 1999, Cognitive changes and modified processing of amyloid precursor protein in the cortical and hippocampal system after cholinergic synapse loss and muscarinic receptor activation. Proc. Natl. Acad. Sci. U S A 96: 12108–12113.PubMedCrossRefGoogle Scholar
  49. Loechel, F., Gilpin, B. J., Engvall, E., Albrechtsen, R., Wewer, U. M., 1998, Human ADAM 12 (meltrin alpha) is an active metalloprotease. J. Biol. Chem. 273: 16993–16997.PubMedCrossRefGoogle Scholar
  50. Lum, L., Reid, M. S., Blobel, C. P., 1998, Intracellular maturation of the mouse metalloprotease disintegrin MDC15. J. Biol. Chem. 273: 26236–26247.PubMedCrossRefGoogle Scholar
  51. Lunn, C. A., Fan, X., Dalie, B., Miller, K., Zavodny, P. J., Narula, S. K., Lundell, D., 1997, Purification of ADAM-10 from bovine spleen as a TNF alpha convertase. FEBS Lett. 400: 333–335.PubMedCrossRefGoogle Scholar
  52. Maillet, M., Robert, S. J., Cacquevel, M., Gastineau, M., Vivien, D., Bertoglio, J., Zugaza, J. L., Fischmeister, R., Lezoualc’h, F., 2003, Crosstalk between Rapl and Rac regulates secretion of sAPPalpha. Nat. Cell Biol. 5: 633–639.PubMedCrossRefGoogle Scholar
  53. Manthey, D., Heck, S., Engert, S., Behl, C., 2001, Estrogen induces a rapid secretion of amyloid beta precursor protein via the mitogen-activated protein kinase pathway. Eur. J. Biochem. 268:4285–4291.PubMedCrossRefGoogle Scholar
  54. Marcinkiewicz, M., Seidah, N., G., 2000, Coordinated expression of β-amyloid precursor protein and the putative β-secretase BACE and α-secretase ADAM-10 in mouse and human brain. J. Neurochem. 75: 2133–2143.PubMedCrossRefGoogle Scholar
  55. Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G. P., Bartunik, H., Ellestad, G. A., Reddy, P., Wolfson, M. R., Rauch, C. T., Castner, B. J., Davis, R., Clarke, H. R., Petersen, M., Fitzner, J. N., Cerretti, D. P., March, C. J., Paxton, R. J., Black, R. A., Bode, W., 1998, Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc. Natl. Acad. Sci. USA 95: 3408–3412.PubMedCrossRefGoogle Scholar
  56. Mattson, M. P., Cheng, B., Culwell, A. R., Esch, F. S., Lieberburg, I., Rydel, R. E., 1993, Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein. Neuron 10: 243–254.PubMedCrossRefGoogle Scholar
  57. Mazzucchelli M, Porrello E, Villetti G, Pietra C, Govoni S, Racchi M (2003) Characterization of the effect of ganstigmine (CHF2819) on amyloid precursor protein metabolism in SH-SY5Y neuroblastoma cells. J. Neural Transm. 110: 935–947.PubMedCrossRefGoogle Scholar
  58. Mechtersheimer, S., Gutwein, P., Agmon-Levin, N., Stoeck, A., Oleszewski, M., Riedle, S., Postina, R., Fahrenholz, F., Fogel, M., Lemmon, V., Altevogt, P., 2001, Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J. Cell Biol. 155: 661–673.PubMedCrossRefGoogle Scholar
  59. Mezaine, H., Dodart. J.-C., Mathis, C., Little, S., Clemens, J., Paul. S. M., Ungerer, A., 1998, Memory-enhancing effects of secreted forms of the β-amyloid precursor protein in normal and amnestic mice. Proc. Natl. Acad. Sci. USA 95: 12683–12688.CrossRefGoogle Scholar
  60. Millichip, M. I., Dallas, D. J., Wu, E., Dale, S., McKie, N., 1998, The metallo-disintegrin ADAM-10 (MADM) from bovine kidney has type IV collagenase activity in vitro. Biochem. Biophys. Res. Commun. 245: 594–598.PubMedCrossRefGoogle Scholar
  61. Moffat, S. D., Zonderman, A. B., Metter, E. J., Kawas, C., Blackman, M. R., Harman, S. M., Resnick, S. M., 2004, Free testosterone and risk for Alzheimer disease in older men. Neurology 62: 188–193.PubMedGoogle Scholar
  62. Moss, M. L., Jin, S. L., Milla, M. E., Bickett, D. M., Burkhart, W., Carter, H. L., Chen, W. I, Clay, W. C., Didsbury, J. R., Hassler, D., Hoffman, C. R., Kost, T. A., Lambert, M. H., Leesnitzer, M. A., McCauley, P., McGeehan, G., Mitchell, J., Moyer, M., Pahel, G., Rocque, W., Overton, L. K., Schoenen, F., Seaton, T., Su, J. L., Becherer, J. D., 1997, Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385: 733–6.PubMedCrossRefGoogle Scholar
  63. Mucke, L., Abraham, C. R., Masliah, E., 1996, Neurotrophic and neuroprotective effects of hAPP in transgenic mice. Ann. N. Y. Acad. Sci. 777: 82–88.PubMedGoogle Scholar
  64. Nath, D., Slocombe, P. M., Webster, A., Stephens, P. E., Docherty, A. J, Murphy, G., 2000, Meltrin gamma(ADAM-9) mediates cellular adhesion through alpha(6)beta(l )integrin, leading to a marked induction of fibroblast cell motility. J. Cell. Sci. 113: 2319–28.PubMedGoogle Scholar
  65. Nitsch, R. M., Deng, A., Wurtman, R. J., Growdon, J. H., 1997, Metabotropic glutamate receptor subtype mGluRl alpha stimulates the secretion of the amyloid beta-protein precursor ectodomain. J. Neurochem. 69: 704–712.PubMedCrossRefGoogle Scholar
  66. Nitsch, R. M., Deng, M., Growdon, J. H., Wurtman, R. J., 1996, Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J. Biol. Chem. 271:4188–4194.PubMedCrossRefGoogle Scholar
  67. Nitsch, R. M., Deng, M., Tennis, M., Schoenfeld, D., Growdon, J. H., 2000, The selective muscarinic M1 agonist AF102B decreases levels of total Abeta in cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol. 48: 913–918.PubMedCrossRefGoogle Scholar
  68. Nitsch, R. M., Slack, B. E., Wurtman, R. J., Growdon, J. H., 1992, Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258: 304–307.PubMedCrossRefGoogle Scholar
  69. Pakaski, M., Rakonczay, Z., Kasa, P., 2001, Reversible and irreversible acetylcholinesterase inhibitors cause changes in neuronal amyloid precursor protein processing and protein kinase C level in vitro. Neurochem. Int. 38: 219–226.PubMedCrossRefGoogle Scholar
  70. Pan, D., Rubin, G. M., 1997, Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90: 271–80.PubMedCrossRefGoogle Scholar
  71. Pandiella, A., Massague, J., 1991, Multiple signals activate cleavage of the membrane transforming growth factor-precursor. J. Biol. Chem. 266: 5769–5773.PubMedGoogle Scholar
  72. Parkin, E. T., Trew, A., Christie, G., Faller, A., Mayer, R., Turner, A. J., Hooper, N. M., 2002, Structure-activity relationship of hydroxamate-based inhibitors on the secretases that cleave the amyloid precursor protein, angiotensin converting enzyme, CD23, and pro-tumor necrosis factor-alpha. Biochemistry 41: 4972–81.PubMedCrossRefGoogle Scholar
  73. Parvathy, S., Hussain, I., Karran, E. H., Turner, A. J., Hooper, N. M., 1998, Alzheimer’s amyloid precursor protein alpha-secretase is inhibited by hydroxamic acid-based zinc tnetalloprotease inhibitors: similarities to the angiotensin converting enzyme secretase. Biochemistry 37: 1680–5.PubMedCrossRefGoogle Scholar
  74. Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., Russell, W. E., Castner, B. J., Johnson, R. S., Fitzner, J. N., Boyce, R. W., Nelson, N., Kozlosky, C. J., Wolfson, M. F., Rauch, C. T., Cerretti, D. P., Paxton, R. J., March, C. I, Black, R. A., 1998, An essential role for ectodomain shedding in mammalian development. Science 282: 1281–4.PubMedCrossRefGoogle Scholar
  75. Postina, R., Schroeder, A., Dewachter, I., Bohl, J., Schmitt, U., Kojro, E., Prinzen, C., Endres, K., Hiemke. C., Blessing, M., Flamez, P., Dequenne, A., Godaux, E., van Leuven, F., Fahrenholz, F., 2004, A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer’s disease mouse model. J. Clin. Invest. 113: 1456–1464.PubMedCrossRefGoogle Scholar
  76. Qi, H., Rand, M.D., Wu, X., Sestan, N., Wang, W., Rakic, P., Xu, T., Artavanis-Tsakonas, S., 1999, Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science. 283:91–94.PubMedCrossRefGoogle Scholar
  77. Racchi, M., Ianna, P., Binetti, G., Trabucchi, M., Govoni, S., 1998, Bradykinin-induced amyloid precursor protein secretion: a protein kinase C-independent mechanism that is not altered in fibroblasts from patients with sporadic Alzheimer’s disease. Biochem. J. 330: 1271–1275.PubMedGoogle Scholar
  78. Racchi, M., Solano, D. C., Sironi, M., Govoni, S., 1999, Activity of alpha-secretase as the common final effector of protein kinase C-dependent and-independent modulation of amyloid precursor protein metabolism. J. Neurochem. 72: 2464–70.PubMedCrossRefGoogle Scholar
  79. Refolo, L. M., Malester, B., LaFrancois, J., Bryant-Thomas, T., Wang, R., Tint, G. S., Sambamurti, K., Duff, K., Pappolla, M. A., 2000, Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neumbiol. Dis. 7: 321–31.CrossRefGoogle Scholar
  80. Riddell, D. R., Christie, G., Hussain, I., Dingwall, C., 2001, Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr. Biol. 11: 1288–93.PubMedCrossRefGoogle Scholar
  81. Rio, C., Buxbaum, J. D., Peschon, J. J., Corfas, G., 2000, Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J. Biol. Chem. 275: 10379–87.PubMedCrossRefGoogle Scholar
  82. Robert, S. J., Zugaza, J. L., Fischmeister, R., Gardier, A. M., Lezoualc’h, F., 2001, The human serotonin 5-HT4 receptor regulates secretion of non-amyloidogenic precursor protein. J. Biol. Chem. 276: 44881–44888.PubMedCrossRefGoogle Scholar
  83. Roberts, S. B., Ripellino, J. A., Ingalls, K. M., Robakis, N. K., Felsenstein, K. M., 1994, Non-amyloidogenic cleavage of the beta-amyloid precursor protein by an integral membrane metalloendopeptidase. J. Biol. Chem. 269: 3111–3116.PubMedGoogle Scholar
  84. Roghani, M., Becherer, J. D., Moss, M. L., Atherton, R. E., Erdjument-Bromage, H., Arribas, J., Blackburn, R. K., Weskamp, G., Tempst, P., Blobel, C. P., 1999, Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J. Biol. Chem. 274: 3531–40.PubMedCrossRefGoogle Scholar
  85. Rooke, J., Pan, D., Xu, T., Rubin, G. M., 1996, KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273: 1227–1231.PubMedCrossRefGoogle Scholar
  86. Rosendahl, M. S., Ko, S. C., Long D. L., Brewer, M. T., Rosenzweig, B., Hedl, E., Anderson L., Pyle, S. M., Moreland J., Meyers, M. A., Kohno, T., Lyons D., Lichenstein, H. S., 1997, Identification and characterization of a pro-tumor necrosis factor-α-processing enzyme from the ADAM family of zinc metalloproteases. J. Biol. Chem. 272: 24588–24593.PubMedCrossRefGoogle Scholar
  87. Rossner, S., Beck, M., Stahl, T., Mendla, K., Schliebs, R., Bigl, V., 2000, Constitutive overactivation of protein kinase C in guinea pig brain increases alpha-secretory APP processing without decreasing beta-amyloid generation. Eur. J. Neurosci. 12: 3191–3200.PubMedCrossRefGoogle Scholar
  88. Sahasrabudhe, S. R., Spruyt, M. A., Muenkel, H. A., Blume, A. J., Vitek, M. P., Jacobsen, J. S., 1992, Release of amino-terminal fragments from amyloid precursor protein reporter and mutated derivatives in cultured cells. J. Biol. Chem. 267: 25602–25608.PubMedGoogle Scholar
  89. Sambamurti, K., Shioi, J., Anderson, J. P., Pappolla, M. A., Robakis, N. K., 1992, Evidence for intracellular cleavage of the Alzheimer’s amyloid precursor in PC 12 cells. J. Neurosci. Res. 33:319–329.PubMedCrossRefGoogle Scholar
  90. Schlondorff, J., Becherer, J. D., Blobel, C. P., 2000, Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE). Biochem. J. 347: 131–8.PubMedCrossRefGoogle Scholar
  91. Seals, D. F., Courtneidge, S. A., 2003, The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 17: 7–30.PubMedCrossRefGoogle Scholar
  92. Selkoe, D. J., 1996, Amyloid beta-protein and the genetics of Alzheimer’s disease. J. Biol. Chem. 271: 18595–18298.Google Scholar
  93. Sennvik, K., Fastbom, J., Blomberg, M., Wahlund, L. O., Winblad, B., Benedikz, E., 2000, Levels of alpha-and beta-secretase-cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer’s disease patients. Neurosc. Lett. 278: 169–172.CrossRefGoogle Scholar
  94. Simons, K., Ikonen, E., 2000, How cells handle cholesterol. Science 290: 1721–1726.PubMedCrossRefGoogle Scholar
  95. Simons, K., Toomre, D., 2000, Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1:31–39.PubMedCrossRefGoogle Scholar
  96. Simons, M., De Strooper, B., Multhaup, G., Tienari, P. J., Dotti, C. G., Beyreuther, K., 1996, Amyloidogenic processing of the human amyloid precursor protein in primary cultures of rat hippocampal neurons. J. Neurosci. 16: 899–908.PubMedGoogle Scholar
  97. Simons, M., Schwarzler, F., Lutjohann, D., von Bergmann, K., Beyreuther, K., Dichgans, J., Wormstall, H., Hartmann, T., Schulz, J. B., 2002, Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann. Neurol. 52: 346–350.PubMedCrossRefGoogle Scholar
  98. Sisodia, S. S., 1992, β-amyloid precursor protein cleavage by a membrane-bound protease. Proc. Natl. Acad. Sci. USA 89: 6075–6079.PubMedCrossRefGoogle Scholar
  99. Six, E., Ndiaye, D., Laabi, Y., Brou, C., Gupta-Rossi, N., Israel, A., Logeat, F., 2003, The Notch ligand Delta 1 is sequentially cleaved by an ADAM protease and gamma-secretase. Proc. Natl. Acad. Sci. USA 100: 7638–43.PubMedCrossRefGoogle Scholar
  100. Skovronsky, D. M., Fath, S., Lee, V. M., Milla, M. E., 2001, Neuronal localization of the TNFalpha converting enzyme (TACE) in brain tissue and its correlation to amyloid plaques. J. Neurobiol. 49: 40–6.PubMedCrossRefGoogle Scholar
  101. Slack, B. E., Breu, J., Muchnicki, L., Wurtman, R. J., 1997, Rapid stimulation of amyloid precursor protein release by epidermal growth factor: role of protein kinase C. Biochem. J. 327: 245–249.PubMedGoogle Scholar
  102. Solano, D.C., Sironi, M., Bonfini, C., Solerte, S.B., Govoni, S., Racchi, M., 2000, Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J. 14: 1015–1022PubMedGoogle Scholar
  103. Srour, N., Lebel, A., McMahon, S., Fournier, I., Fugere, M., Day, R., Dubois, C. M., 2003, TACE/ADAM-17 maturation and activation of sheddase activity require proprotein convertase activity. FEBS Lett. 554: 275–83.PubMedCrossRefGoogle Scholar
  104. Tomita, S., Kirino, Y., Suzuki, T., 1998, Cleavage of Alzheimer’s amyloid precursor protein (APP) by secretases occurs after O-glycosylation of APP in the protein secretory pathway. Identification of intracellular compartments in which APP cleavage occurs without using toxic agents that interfere with protein metabolism. J. Biol. Chem. 273: 6277–6284.PubMedCrossRefGoogle Scholar
  105. Tyler, S. J., Dawbarn, D., Wilcock, G. K., Allen, S. J., 2002, Alpha-and beta-secretase: profound changes in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 299: 373–6.PubMedCrossRefGoogle Scholar
  106. Wada, S., Morishima-KLawashima, M., Qi, Y., Misono, H., Shimada, Y., Ohno-Iwashita, Y., Ihara, Y., 2003, Gamma-secretase activity is present in rafts but is not cholesterol-dependent. Biochemistry. 42: 13977–86.PubMedCrossRefGoogle Scholar
  107. Wahrle, S., Das, P., Nyborg, A. C., McLendon, C., Shoji, M., Kawarabayashi, T., Younkin, L. H., Younkin, S. G., Golde, T. E., 2002, Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9: 11–23.PubMedCrossRefGoogle Scholar
  108. Weidemann, A., König, G., Bunke, D., Fischer, P., Salbaum, J., Masters, C. L., Beyreuther, K., 1989, Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57: 115–126.PubMedCrossRefGoogle Scholar
  109. Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., Siegel, G., 2000, Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57: 1439–43.PubMedCrossRefGoogle Scholar
  110. Weskamp, G., Cai, H., Brodie, T. A., Higashyama, S., Manova, K., Ludwig, T., Blobel, C. P., 2002, Mice lacking the metalloprotease-disintegrin MDC9 (ADAM-9) have no evident major abnormalities during development or adult life. Mol. Cell. Biol. 22: 1537–44.PubMedCrossRefGoogle Scholar
  111. Wu, E., Croucher, P. I., McKie, N., 1997, Expression of members of the novel membrane linked metalloproteinase family ADAM in cells derived from a range of hematological malignancies. Biochem. Biophys. Res. Commun. 235: 437–42.PubMedCrossRefGoogle Scholar
  112. Xu, H., Gouras, G. K., Greenfield, J. P., Vincent, B., Naslund, J., Mazzarelli, L., Fried, G., Jovanovic, J. N., Seeger, M., Relkin, N. R., Liao, F., Checler, F., Buxbaum, J. D., Chait, B. T., Thinakaran, G., Sisodia, S. S., Wang, R., Greengard, P., Gandy, S., 1998, Estrogen reduces neuronal generation of Alzheimer beta-amyloid peptides. Nat. Med. 4: 447–451.PubMedCrossRefGoogle Scholar
  113. Youdim, M. B., Amit, T., Bar-Am, O., Weinstock, M., Yogev-Falach, M., 2003, Amyloid processing and signal transduction properties of antiparkinson-antialzheimer neuroprotective drugs rasagiline and TV3326. Ann. N. Y. Acad. Sci. 993: 378–386.PubMedCrossRefGoogle Scholar
  114. Zhong, Z., Higaki, J., Murakami, K., Wang., Y., Catalano, R., Quon, D., Cordell, B., 1994, Secretion of beta-amyloid precursor protein involves multiple cleavage sites. J. Biol. Chem. 269: 627–632.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Elżbieta Kojro
    • 1
  • Falk Fahrenholz
    • 1
  1. 1.Institute of BiochemistryJohannes Gutenberg UniversityMainzGermany

Personalised recommendations