Advertisement

β-Secretase, APP and Aβ in Alzheimer’s Disease

  • Robert Vassar
Part of the Subcellular Biochemistry book series (SCBI, volume 38)

Abstract

Amyloid plaques, hallmark neuropathological lesions in Alzheimer’s disease (AD) brain, are composed of the β-amyloid peptide (Aβ). A large body of evidence suggests Aβ is central to the pathophysiology of AD and is likely to start this intractable neurodegenerative disorder. Mutations in three genes (amyloid precursor protein/APP, presenilin1, presenilin2) cause early on-set familial AD by increasing synthesis of the toxic 42 amino acid species of Aβ (Aβ42). Fibrillar Aβ in amyloid plaques appears to cause neurodegeneration, although recent studies suggest soluble Aβ oligomers may also be neurotoxic. Regardless, given the strong correlation between Aβ and AD, therapeutic strategies to lower cerebral Aβ levels should prove beneficial for the treatment of AD. Aβ is derived from APP via cleavage by two proteases, β- and γ-secretase. β-secretase, recently identified as the novel aspartic protease BACE1, initiates the formation of Aβ. Consequently, BACE1 in principle is an excellent therapeutic target for strategies to reduce the production of Aβ in AD. However, the discovery of the homologue BACE2 raised the question of whether it too may be a β-secretase. To settle this issue, our group and others have used gene targeting to generate BACE1 deficient (knockout) mice. These BACE1 knockout mice have been instrumental in validating BACE1 as the authentic β-secretase in vivo. Here, I review the roles of BACE1, APP, and Aβ in AD and discuss the implications of therapeutic approaches that target BACE1 for the treatment of AD.

Key words

β-secretase amyloid precursor protein (APP) β- amyloid (Aβ) BACE1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acquati, F., Accarino, M., Nucci, C., Fumagalli, P., Jovine, L., Ottolenghi, S., and Taramelli, R., 2000, The gene encoding DRAP (BACE2), a glycosylated transmembrane protein of the aspartic protease family, maps to the Down’scritical region. FEBS Lett. 468: 59–64.PubMedCrossRefGoogle Scholar
  2. Bacskai, B.J., Kajdasz, S.T., Christie, R.H., Carter, C., Games, D., Seubert, P., Schenk, D., and Hyman, B.T., 2001, Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med., 7: 369–372.PubMedCrossRefGoogle Scholar
  3. Bard, F., Cannon, C., Barbour, R., Burke, R.L., Games, D., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Lieberburg, I., Motter, R., Nguyen, M., Soriano, F., Vasquez, N., Weiss, K., Welch, B., Seubert, P., Schenk, D., and Yednock, T., 2000, Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6: 916–919.PubMedCrossRefGoogle Scholar
  4. Bennett, B.D., Babu-Khan, S., Loeloff, R., Louis, J.-C., Curran, E., Citron, M., and Vassar, R., 2000a, Expression analysis of BACE2 in brain and peripheral tissues. J. Biol. Chem. 275:20647–20651.PubMedCrossRefGoogle Scholar
  5. Bennett, B.D., Denis, P., Haniu, M., Teplow, D.B., Kahn, S., Louis, J.-C., Citron, M., and Vassar, R., 2000b, A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer’s β-secretase. J. Biol. Chem. 275: 37712–37717.PubMedCrossRefGoogle Scholar
  6. Bodendorf, U., Danner, S., Fischer, F., Stefani, M., Sturchler-Pierrat, C., Wiederhold, K.H., Staufenbiel, M., and Paganetti, P., 2002, Expression of human β-secretase in the mouse brain increases the steady-state level of β-amyloid. J. Neurochem., 80: 799–806.PubMedCrossRefGoogle Scholar
  7. Bodendorf, U., Fischer, F., Bodian, D., Multhaup, G., and Paganetti, P., 2001, A splice variant of β-secretase deficient in the amyloidogenic processing of the amyloid precursor protein. J. Biol. Chem. 276: 12019–12023.PubMedCrossRefGoogle Scholar
  8. Buxbaum, J.D., Liu, K.N., Luo, Y., Slack, J.L., Stocking, K.L., Peschon, J.J., Johnson, R.S., Castner, B.J., Cerretti, D.P., and Black, R.A., 1998, Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273: 27765–27767.PubMedCrossRefGoogle Scholar
  9. Cai, H., Wang, Y., McCarthy, D., Wen, H., Borchelt, D.R., Price, D.L., and Wong, P.C., 2001, BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nature Neurosci. 4: 233–234..PubMedCrossRefGoogle Scholar
  10. Citron, M., Diehl, T.S., Capell, A., Haass, C., Teplow, D.B., and Selkoe, D.J., 1996, Inhibition of amyloid β-protein production in neural cells by the serine protease inhibitor AEBSF. Neuron 17: 171–179.PubMedCrossRefGoogle Scholar
  11. Citron, M., Teplow, D.B. and Selkoe, D.J., 1995, Generation of amyloid β-protein from its precursor is sequence specific. Neuron 14: 661–670.PubMedCrossRefGoogle Scholar
  12. Cummings, B.J. and Cotman, C.W., 1995, Image analysis of beta-amyloid load in Alzheimer’s disease and relation to dementia severity. Lancet 346: 1524–1528.PubMedCrossRefGoogle Scholar
  13. Dodart, J.C., Bales, K.R., Gannon, K.S., Greene, S.J., DeMattos, R.B., Mathis, C., DeLong, C.A., Wu, S., Wu, X., Holtzman, D.M., and Paul, S.M., 2002, Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat. Neurosci. 5: 452–457.PubMedGoogle Scholar
  14. Farzan, M., Schnitzler, C.E., Vasilieva, N., Leung, D., and Choe, H., 2000, BACE2, a β-secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein. Proc. Natl. Acad. Sci. USA 97: 9712–9717.PubMedCrossRefGoogle Scholar
  15. Francis, R., McGrath, G., Zhang, J., Ruddy, D.A., Sym, M., Apfeld, J., Nicoll, M., Maxwell, M., Hai, B., Ellis, M.C., Parks, A.L., Xu, W., Li, J., Gurney, M., Myers, R.L., Himes, C.S., Hiebsch, R., Ruble, C., Nye, J.S., and Curtis, D., 2002, aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev. Cell 3: 85–97.PubMedCrossRefGoogle Scholar
  16. Ghosh, A.K., Shin, D., Downs, D., Koelsch, G., Lin, X., Ermolieff, J., and Tang, J., 2000, Design of potent inhibitors for human brain memapsin 2 (β-secretase). J. Am. Chem. Soc. 122: 3522–3523.CrossRefGoogle Scholar
  17. Glenner, G.G., and Wong, C.W., 1984, Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120: 885–890.PubMedCrossRefGoogle Scholar
  18. Gouras, G.K., Xu, H., Jovanovic, J.N., Buxbaum, J.D., Wang, R., Greengard, P., Relkin, N.R., and S., G., 1998, Generation and regulation of β-amyloid peptide variants by neurons. J. Neurochem. 71: 1920–1925.PubMedCrossRefGoogle Scholar
  19. Haass, C., Capell, A., Citron, M., Teplow, D.B., and Selkoe, D.J., 1995a, The vacuolar H+ ATPase inhibitor bafilomycin Al differentially affects proteolytic processing of mutant and wild-type β-amyloid precursor protein. J. Biol. Chem. 270: 6186–6192.PubMedCrossRefGoogle Scholar
  20. Haass, C., Hung, A.Y., Schlossmacher, M.G., Teplow, D.B., and Selkoe, D.J., 1993, β-amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J. Biol. Chem. 268: 3021–3024.PubMedGoogle Scholar
  21. Haass, C., Lemere, C.A., Capell, A., Citron, M., Seubert, P., Schenk, D., Lannfelt, L., and Selkoe, D.J., 1995b, The Swedish mutation causes early-onset Alzheimer’s disease by (3-secretase cleavage within the secretory pathway. Nature Meet. 1: 1291–1296.CrossRefGoogle Scholar
  22. Haass, C., Schlossmacher, M.G., Hung, A.Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B.L., Lieberburg, I., Koo, E.H., Schenk, D., Teplow, D.B., and Selkoe, D.J., 1992, Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359: 322–325.PubMedCrossRefGoogle Scholar
  23. Haniu, M., Denis, P., Young, Y., Mendiaz, E.A., Fuller, J., Hui, J.O., Bennett, B.D., Kahn, S., Ross, S., Burgess, T., Katta, V., Rogers, G., Vassar, R, and Citron, M., 2000, Characterization of Alzheimer’s β-secretase protein BACE. J. Biol. Chem. 275: 21099–21106.PubMedCrossRefGoogle Scholar
  24. Hardy, J., and Selkoe, D.J., 2002, The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 353–356.PubMedCrossRefGoogle Scholar
  25. Hartley, D.M., Walsh, D.M., Ye, C.P., Diehl, T., Vasquez, S., Vassilev, P.M., Teplow, D.B., and Selkoe, D.J., 1999, Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neumsci. 19: 8876–8884.Google Scholar
  26. Holsinger, R.M.D., McLean, C.A., Beyreuther, K., Masters, C.L., and Evin, G., 2002, Increased expression of the amyloid precursor β-secretase in Alzheimer’s disease. Ann. Neurol. 51: 783–786.PubMedCrossRefGoogle Scholar
  27. Hong, L., Koelsch, G., Lin, X., Wu, S., Terzyan, S., Ghosh, A.K., Zhang, X.C., and Tang, J., 2000, Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science 290: 150–153.PubMedCrossRefGoogle Scholar
  28. Hsiao Ashe, K., 2001, Learning and Memory in Transgenic Mice Modeling Alzheimer’s Disease. Learn. Mem. 8: 301–308.CrossRefGoogle Scholar
  29. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G., 1996, Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274: 99–103.PubMedCrossRefGoogle Scholar
  30. Hussain, I., Powell, D., Howlett, D.R., Tew, D.G., Meek, T.D., Chapman, C., Gloger, I.S., Murphy, K.E., Southan, C.D., Ryan, D.M., Smith, T.S., Simmons, D.L., Walsh, F.S., Dingwall, C., and Christie, G., 1999, Identification of a novel aspartic protease (Asp 2) as β-Secretase. Mol. Cell. Neumsci. 14: 419–427.CrossRefGoogle Scholar
  31. Hussain, I., Powell, D.J., Howlett, D.R., Chapman, G.A., Gilmour, L., Murdock, P.R., Tew, D.G., Meek, T.D., Chapman, C., Schneider, K., Ratcliffe, S.J., Tattersall, D., Testa, T.T., Southan, C., Ryan, D.M., Simmons, D.L., Walsh, F.S., Dingwall, C., and Christie, G., 2000, ASP1 (BACE2) cleaves the amyloid precursor protein at the β-secretase site. Mol. Cell. Neurosci. 16: 609–619.PubMedCrossRefGoogle Scholar
  32. Hutton, M., Perez-Tur, J., and Hardy, J., 1998, Genetics of Alzheimer’s disease. Essays Biochem. 33: 117–131.PubMedGoogle Scholar
  33. Janus, C., Pearson, J., McLaurin, J., Mathews, P.M., Jiang, Y., Schmidt, S.D., Chishti, M.A., Horne, P., Heslin, D., French, J., Mount, H.T., Nixon, R.A., Mercken, M., Bergeron, C., Fraser, P.E., St George-Hyslop, P., and Westaway, D., 2000, Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408: 979–982.PubMedCrossRefGoogle Scholar
  34. Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S. and Malinow, R., 2003, APP processing and synaptic function. Neuron 37: 925–937.PubMedCrossRefGoogle Scholar
  35. Kang, J., Lemaire, H.-G., Unterbeck, A., Salbaum, J.M., Masters, C.L., Grzeschik, K.-H., Multhaup, G., Beyreuther, K., and Muller-Hill, B., 1987, The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736.PubMedCrossRefGoogle Scholar
  36. Kitazume, S., Tachida, Y., Oka, R., Shirotani, K., Saido, T.C., and Hashimoto, Y., 2001, Alzheimer’s β-secretase, β-site amyloid precursor protein-cleaving enzyme, is responsible for cleavage secretion of a Golgi-resident sialyltransferase. Proc. Natl. Acad. Sci. USA 98: 13554–13559.PubMedCrossRefGoogle Scholar
  37. Klein, W.L., Krafft, G.A., and Finch, C.E., 2001, Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci. 24: 219–224.PubMedCrossRefGoogle Scholar
  38. Knops, J., Suomensaari, S., Lee, M., McConlogue, L., Seubert, P., and Sinha, S., 1995, Cell-type and amyloid precursor protein-type specific inhibition of Aβ release by bafilomycin Al, a selective inhibitor of vacuolar ATPases. J. Biol. Chem. 270: 2419–2422.PubMedCrossRefGoogle Scholar
  39. Koo, E.H., and Squazzo, S., 1994, Evidence that production and release of amyloid β-protein involves the endocytic pathway. J. Biol. Chem. 269: 17386–17389.PubMedGoogle Scholar
  40. Kotilinek, L.A., Bacskai, B., Westerman, M., Kawarabayashi, T., Younkin, L., Hyman, B.T., Younkin, S., and Ashe, K.H., 2002, Reversible memory loss in a mouse transgenic model of Alzheimer’s disease. J. Neurosci. 22: 6331–6335.PubMedGoogle Scholar
  41. Kuo, Y.M., Emmerling, M.R., Vigo-Pelfrey, C., Kasunic, T.C., Kirkpatrick, J.B., Murdoch, G.H., Ball, M.J., and Roher, A.E., 1996, Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 271: 4077–4081.PubMedCrossRefGoogle Scholar
  42. Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T.E., Rozovsky, I., Trommer, B., Viola, K.L., Wals, P., Zhang, C., Finch, C.E., Krafft, G.A., and Klein, W.L., 1998, Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95: 6448–6453.PubMedCrossRefGoogle Scholar
  43. Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C., and Fahrenholz, F., 1999, Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA 96: 3922–3927.PubMedCrossRefGoogle Scholar
  44. Lee, V.M.-Y., Balin, B.J., Otvos, L. and Trojanowski, J.Q., 1991, A major subunit of paired helical filaments and derivatized forms of normal tau. Science 251: 675–678.PubMedCrossRefGoogle Scholar
  45. Lichtenthaler, S.F., Dominguez, D.I., Westmeyer, G.G., Reiss, K., Haass, C., Saftig, P., De Strooper, B. and Seed, B., 2003, The cell adhesion protein P-selectin glycoprotein ligand-1 is a substrate for the aspartyl protease BACE1. J. Biol. Chem. 278: 48713–4871.PubMedCrossRefGoogle Scholar
  46. Lin, X., Koelsch, G., Wu, S., Downs, D., Dashti, A., and Tang, J., 2000, Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc. Natl. Acad. Sci. USA 97: 1456–1460.PubMedCrossRefGoogle Scholar
  47. Luo, Y., Bolon, B., Damore, M.A., Fitzpatrick, D., Liu, H., Zhang, J., Yan, Q., Vassar, R., and Citron, M., 2003, BACE1 (β-secretase) knockout mice do not acquire compensatory gene expression changes or develop neural lesions over time. Neurobiol. Dis. 4: 81–88.CrossRefGoogle Scholar
  48. Luo, Y., Bolon, B., Kahn, S., Bennett, B.D., Babu-Khan, S., Denis, P., Fan, W., Kha, H., Zhang, J., Gong, Y., Martin, L., Louis, J.-C., Yan, Q., Richards, W.G., Citron, M., and Vassar, R., 2001, Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nature Neurosci. 4: 231–232.PubMedCrossRefGoogle Scholar
  49. Marcinkeviciene, J., Luo, Y., Graciani, N.R., Combs, A.P., and Copeland, R.A., 2001, Mechanism of inhibition of β-site amyloid precursor protein-cleaving enzyme (BACE) by a statine-based peptide. J. Biol. Chem. 276: 23790–23794.PubMedCrossRefGoogle Scholar
  50. Marcinkiewicz, M., and Seidah, N.G., 2000, Coordinated expression of β-amyloid precursor protein and the putative β-secretase BACE and α-secretase ADAM 10 in mouse and human brain. J. Neurochem. 75: 2133–2143.PubMedCrossRefGoogle Scholar
  51. Morgan, D., Diamond, D.M., Gottschall, P.E., Ugen, K.E., Dickey, C., Hardy, J., Duff, K., Jantzen, P., DiCarlo, G., Wilcock, D., Connor, K., Hatcher, J., Hope, C., Gordon, M., and Arendash, G.W., 2000, Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408: 982–985.PubMedCrossRefGoogle Scholar
  52. Mullan, M., Crawford, F., Houlden, H., Axelman, K., Lilius, L., Winblad, B., and Lannfelt, L., 1992a, A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nat. Genet. 1: 345–347.PubMedCrossRefGoogle Scholar
  53. Murphy, T., Yip, A., Brayne, C., Easton, D., Evans, J.G., Xuereb, J., Cairns, N., Esiri, M.M., and Rubinsztein, D.C., 2001, The BACE gene: genomic structure and candidate gene study in late-onset Alzheimer’s disease. Neuroreport 12: 631–634.PubMedCrossRefGoogle Scholar
  54. Nowotny, P., Kwon, J.M., Chakraverty, S., Nowotny, V., Morris, J.C., and Goate, A.M., 2001, Association studies using novel polymorphisms in BACE1 and BACE2. Neuroreport 12: 1799–1802.PubMedCrossRefGoogle Scholar
  55. Ohno, M., Sametsky, E.A., Younkin, L.H., Oakley, H., Younkin, S.G., Citron, M., Vassar, R., and Disterhoft, J.F., 2004, BACE1 Deficiency Rescues Memory Deficits and Cholinergic Dysfunction in a Mouse Model of Alzheimer’s Disease. Neuron 41: 27–33.PubMedCrossRefGoogle Scholar
  56. Parvathy, S., Davies, P., Haroutunian, V., Purohit, D.P., Davis, K.L., Mohs, R.C., Park, H., Moran, T.M., Chan, J.Y., and Buxbaum, J.D., 2001, Correlation between Abetax-40-, Abetax-42-, and Abetax-43-containing amyloid plaques and cognitive decline. Arch. Neural. 58: 2025–2032.CrossRefGoogle Scholar
  57. Pike, C.J., Overman, M.J., and Cotman, C.W., 1995, Amino-terminal deletions enhance aggregation of β-amyloid peptides in vitro. J. Biol. Chem. 270: 23895–23898.PubMedCrossRefGoogle Scholar
  58. Roberds, S.L., Anderson, J., Basi, G., Bienkowski, M.J., Branstetter, D.G., Chen, K.S., Freedman, S.B., Frigon, N.L., Games, D., Hu, K., Johnson-Wood, K., Kappenman, K.E., Kawabe, T.T., Kola, I., Kuehn, R., Lee, M., Liu, W., Motter, R., Nichols, N.F., Power, M., Robertson, D.W., Schenk, D., Schoor, M., Shopp, G.M., Shuck, M.E., Sinha, S., Svensson, K.A., Tatsuno, G., Tintrup, H., Wijsman, J., Wright, S., and McConlogue, L., 2001, BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Hum. Mol. Genet. 10: 1317–1324.PubMedCrossRefGoogle Scholar
  59. Roher, A.E., Lowenson, J.D., Clarke, S., Wolkow, C., Wang, R., Cotter, R.J., Reardon, I., Zurcher-Neely, H.A., Heinrikson, R.L., Ball, M.J., and Greenberg, B.D., 1993, Structural alterations in the peptide backbone of β-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J. Biol. Chem. 268: 3072–3083.PubMedGoogle Scholar
  60. Sauder, J.M., Arthur, J.W., and Dunbrack, R.L., Jr., 2000, Modeling of substrate specificity of the Alzheimer’s disease amyloid precursor protein β-secretase. J. Mol. Biol. 300: 241–248PubMedCrossRefGoogle Scholar
  61. Saunders, A.J., Kim, T.-W., Tanzi, R.E., Fan, W., Bennett, B.D., Babu-Khan, S., Luo, Y., Louis, J.-C., McCaleb, M., Citron, M., Vassar, R., and Richards, W.G., 1999, BACE maps to chromosome 11 and a BACE homolog, BACE2, reside in the obligate Down’ssyndrome region of chromosome 21. Science 286: 1255a.CrossRefGoogle Scholar
  62. Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Liao, Z., Lieberburg, I., Motter, R., Mutter, L., Soriano, F., Shopp, G., Vasquez, N., Vandevert, C., Walker, S., Wogulis, M., Yednock, T., Games, D., and Seubert, P., 1999, Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173–177.PubMedCrossRefGoogle Scholar
  63. Selkoe, D.J., 2001, Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev, 81: 741–766.PubMedGoogle Scholar
  64. Seubert, P., Oltersdorf, T., Lee, M.G., Barbour, R., Blomqist, C., Davis, D.L., Bryant, K., Fritz, L.C., Galasko, D., Thal, L.J., Lieberburg, I., and Schenk, D.B., 1993, Secretion of β-amyloid precursor protein cleaved at the amino-terminus of the β-amyloid peptide. Nature 361: 260–263.PubMedCrossRefGoogle Scholar
  65. Sinha, S., Anderson, J.P., Barbour, R., Basi, G.S., Caccavello, R., Davis, D., Doan, M., Dovey, H.F., Frigon, N., Hong, J., Jacobson-Croak, K., Jewett, N., Keim, P., Knops, J., Lieberburg, I., Power, M., Tan, H., Tatsuno, G., Tung, J., Schenk, D., Seubert, P., Suomensaari, S.M., Wang, S., Walker, D., Zhao, J., McConlogue, L., and John, V., 1999, Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402: 537–540.PubMedCrossRefGoogle Scholar
  66. Sisodia, S.S., Kim, S.H., and Thinakaran, G., 1999, Function and dysfunction of the presenilins. Am. J. Hum. Genet. 65: 7–12.PubMedCrossRefGoogle Scholar
  67. Solans, A., Estivill, X., and de La Luna, S., 2000, A new aspartyl protease on 21q22.3, BACE2, is highly similar to Alzheimer’s amyloid precursor protein β-secretase. Cytogenet. Cell Genet. 89: 177–184.PubMedCrossRefGoogle Scholar
  68. Takasugi, N., Tomita, T., Hayashi, I., Tsuruoka, M., Niimura, M., Takahashi, Y., Thinakaran, G., and Iwatsubo, T. (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422: 438–441.PubMedCrossRefGoogle Scholar
  69. Tanzi, R.E., Gusella, J.F., Watkins, P.C., Bruns, G.A.B., St. George-Hyslop, P.H., Van Keuren, M.L., Patterson, D., Pagan, S., Kurnit, D.M., and Neve, R.L., 1987, Amyloid β-protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235: 880–884.PubMedCrossRefGoogle Scholar
  70. Terry, R.D., Masliah, E., and Hansen, L.A., 1999, The neuropathology of Alzheimer disease and the structural basis of its cognitive alterations. In Alzheimer Disease (R.D. Terry, R. Katzman, K.L. Bick, and S.S. Sisodia, eds.), Lippincott Williams and Wilkins, Philadelphia, pp. 187–206.Google Scholar
  71. Vassar, R., Bennett, B.D., Babu-Khan, S., Kahn, S., Mendiaz, E.A., Denis, P., Teplow, D.B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M.A., Biere, A.L., Curran, E., Burgess, T., Louis, J.-C., Collins, F., Treanor, J., Rogers, G., and Citron, M., 1999, β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286: 735–741.PubMedCrossRefGoogle Scholar
  72. Vassar, R., and Citron, M., 2000, Aβ-generating enzymes: recent advances in β-and γ-secretase research. Neuron 27: 419–422.PubMedCrossRefGoogle Scholar
  73. Wolfe, M.S., Angeles, J.D.L., Miller, D.D., Xia, W., and Selkoe, D.J., 1999a, Are presenilins intramembrane-cleaving proteases? Implications for the molecular mechanism of Alzheimer’s disease. Biochemistry 38: 11223–11230.PubMedCrossRefGoogle Scholar
  74. Wolfe, M.S., Xia, W., Ostaszewski, B.L., Diehl, T.S., Kimberly, W.T., and Selkoe, D.J., 1999b, Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398: 513–517.PubMedCrossRefGoogle Scholar
  75. Yan, R., Bienkowski, M.J., Shuck, M.E., Miao, H., Tory, M.C., Pauley, A.M., Brashler, J.R., Stratman, N.C., Mathews, W.R., Buhl, A.E., Carter, D.B., Tomasselli, A.G., Parodi, L.A., Heinrikson, R.L., and Gurney, M.E., 1999, Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature 402: 533–537.PubMedCrossRefGoogle Scholar
  76. Yan, R., Munzner, J.B., Shuck, M.E., and Bienkowski, M.J., 2001, BACE2 functions as an alternative α-secretase in cells. J. Biol. Chem. 276: 34019–34027.PubMedCrossRefGoogle Scholar
  77. Younkin, S.G., 1998, The role of Abeta 42 in Alzheimer’s disease. J. Physioi (Paris) 92: 289–292.CrossRefGoogle Scholar
  78. Yu, G., Nishimura, M., Arawaka, S., Levitan, D., Zhang, L., Tandon, A., Song, Y.Q., Rogaeva, E., Chen, F., Kawarai, T., Supala, A., Levesque, L., Yu, H., Yang, D.S., Holmes, E., Milman, P., Liang, Y., Zhang, D.M., Xu, D.H., Sato, C., Rogaev, E., Smith, M., Janus, C., Zhang, Y., Aebersold, R., Farrer, L.S., Sorbi, S., Bruni, A., Fraser, P., and St George-Hyslop, P., 2000, Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407: 48–54.PubMedCrossRefGoogle Scholar
  79. Zhao, J., Paganini, L., Mucke, L., Gordon, M., Refolo, L., Camian, M., Sinha, S., Oltersdorf, T., Lieberburg, I., and McConlogue, L., 1996, β-Secretase processing of the β-amyloid precursor protein in transgenic mice is efficient in neurons but inefficient in astrocytes. J. Biol. Chem. 271: 31407–31411.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Robert Vassar
    • 1
  1. 1.Department of Cell and Molecular Biology, The Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations