Transgenic Mouse Models for APP Processing and Alzheimer’s Disease: Early and Late Defects

  • Tom van Dooren
  • Ilse Dewachter
  • Peter Borghgraef
  • Fred van Leuven
Part of the Subcellular Biochemistry book series (SCBI, volume 38)


Transgenic mice with neuronal expression of human AD-mutant APP[V7171] in their brain recapitulate robustly the amyloid pathology as seen in Alzheimer’s disease (AD) patients. The AD related pathological phenotype consisting of amyloid plaques and vascular amyloid pathology, develop progressively and relative late in ageing APP transgenic mice, between 10 and 15 months of age. In contrast to the late - and clinically irrelevant - amyloid plaque-pathology, the early cognitive defects and behavioural features are clinically more interesting. This review discusses the generation and in depth phenotypic characterization of both aspects of the APP[V717I] transgenic mice. Attention is focussed on the relation of biochemical data of the different APP fragments and amyloid peptides to the formation of the typical early defects and the late parenchymal and vascular amyloid depositions. The APP[V717I] transgenic mice are a perfect model to characterize and investigate early biochemical and cognitive aspects and a potential resource to define pathological interactions of different factors known to be involved in AD. Finally, any therapeutic intervention can be directly tested and explored in these transgenic mice as excellent pre-clinical models

Key words

Transgenic mice Alzheimer’s disease (AD) amyloid-plaque-pathology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attems J., Jellinger K.A., 2004, Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology — a pilot study. Acta Neuropathol. (Berl). 107: 83–90.CrossRefGoogle Scholar
  2. Blennow K., Hampel H., 2003, CSF markers for incipient Alzheimer’s disease. Lancet Neurol. 2: 605–613.PubMedCrossRefGoogle Scholar
  3. Braak H., Braak E., 1991, Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl) 82: 239–259.CrossRefGoogle Scholar
  4. De Strooper B., Saftig P., Craessaerts K., Vanderstichele H., Guhde G., Annaert W., Von Figura K., Van Leuven F., 1998, Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391: 387–390.PubMedCrossRefGoogle Scholar
  5. Delacourte A., Buee L., 2000, Tau pathology: a marker of neurodegenerative disorders. Curr. Opin. Neurol. 13: 371–376.PubMedCrossRefGoogle Scholar
  6. Dewachter I., Van Dorpe J., Smeijers L., Gilis M., Kuiperi C., Laenen I., Caluwaerts N., Moechars D., Checler F., Vanderstichele H. and Van Leuven F., 2000, Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant presenilinl. J. Neurosc. 20: 6452–6458.Google Scholar
  7. Dewachter I., Reverse D., Caluwaerts N., Ris L., Kuiperi C., Van den Haute C., Spittaels K., Umans L., Serneels L., Thiry E., Moechars D., Mercken M., Godaux E., Van Leuven F., 2002, Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J. Neurosci.. 22: 3445–3453.PubMedGoogle Scholar
  8. Dewachter I., Van Leuven F., 2002, Secretases as targets for the treatment of Alzheimer’s disease: the prospects. Lancet Neurol.. 1: 409–416.PubMedCrossRefGoogle Scholar
  9. Hardy J., 1997, The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc. Natl. Acad. Sci. USA 94: 2095–2097.PubMedCrossRefGoogle Scholar
  10. May P. and Herz J., 2003, LDL Receptor-related proteins in Neurodevelopment. Traffic, 203: 291–301.CrossRefGoogle Scholar
  11. Heutink P., 2000, Untangling tau-related dementia. Hum. Mol. Genet.. 9: 979–986.PubMedCrossRefGoogle Scholar
  12. Hsiao K., Chapman P., Nilsen S., Eckman C., Hariqaya Y., Younkin S., Yang F., Cole G., 1996, Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 174: 99–102.CrossRefGoogle Scholar
  13. Ingram E.M., Spillantini M.G., 2002, Tau gene mutations: dissecting the pathogenesis of FTDP-17. Trends Mol. Med. 8: 555–562.PubMedCrossRefGoogle Scholar
  14. Jin L.W., Hua D.H., Shie F.S., Maezawa I., Sopher B., Martin G.M., 2002, Novel tricyclic pyrone compounds prevent intracellular APP C99-induced cell death. J. Mol. Neurosci.. 19: 57–61.PubMedGoogle Scholar
  15. Johnson-Wood K., Lee M., Motter R., Hu K., Gordon G., Barbour R., Khan K., Gordon M. Tan H., Games D., Lieberburg I., Schenk D., Seubert P., McConlogue L., 1997, Amyloid precursor protein processing and Abeta42 deposition in a transgenic mouse model of Alzheimer disease. Proc. Natl. Acad. Sci. USA 94: 1550–1555.PubMedCrossRefGoogle Scholar
  16. Lewis J., Dickson D.W., Lin W.L., Chisholm L., Corral A., Jones G., Yen S.H., Sahara N., Skipper L., Yager D., Eckman C., Hardy J., Hutton M., McGowan E., 2001, Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293: 1487–1491.PubMedCrossRefGoogle Scholar
  17. Li Q.X., Maynard C., Cappai R., McLean C.A., Cherny R.A., Lynch T., Culvenor J.G., Trevaskis J., Tanner J.E., Bailey K.A., Czech C., Bush A.I., Beyreuther K., Masters C.L., 1999, Intracellular accumulation of detergent-soluble amyloidogenic A beta fragment of Alzheimer’s disease precursor protein in the hippocampus of aged transgenic mice. J. Neurochem.. 72: 2479–2787.PubMedCrossRefGoogle Scholar
  18. Liu K., Doms R.W. and Lee V.M.Y., 2002, Glul 1 site cleavage and N-terminally truncated Aβ production upon BACE overexpression. Biochemistry 41: 3128–3136.PubMedCrossRefGoogle Scholar
  19. Moechars D., Lorent K., De Strooper B., Dewachter I. and Van Leuven F., 1996, Expression in brain of amyloid precursor protein mutated in the α-secretase site causes disturbed behavior, neuronal degeneration and premature death in transgenic mice. EMBO J. 15: 1265–1274.PubMedGoogle Scholar
  20. Moechars D., Gilis M., Kuiperi C. Laenen I., Van Leuven F., 1998, Aggressive behaviour in transgenic mice expressing APP is alleviated by serotonergic drugs. NeuroReport 9: 3561–3564.PubMedGoogle Scholar
  21. Moechars D., Dewachter I., Lorent K., Reversé D., Baekelandt V., Naidu A., Tesseur I., Spittaels K., Van Den Haute C., Checler F., Godaux E., Cordell B. and Van Leuven F., 1999a, Early phenotypic changes in transgenic mice that overexpress different mutants of Amyloid Precursor Protein in brain. J. Biol. Chem. 274: 6483–6492.PubMedCrossRefGoogle Scholar
  22. Moechars D., Lorent K., and Van Leuven F., 1999b, Premature death in transgenic mice that overexpress mutant Amyloid precursor protein is preceded by severe neurodegeneration and apoptosis. Neuroscience 91: 819–830, 1999.PubMedCrossRefGoogle Scholar
  23. Pedersen W.A., Culmsee C., Ziegler D., Herman J.P., and Mattson M.P., 1999, Aberrant stress response associated with severe hypoglycemia in a transgenic mouse model of Alzheimer’s disease. J. Mol. Neurosci. 13: 159–165.PubMedCrossRefGoogle Scholar
  24. Postina R., Schroeder A., Dewachter I., Bohl J., Schmitt U., Kojro E., Prinzen C., Endres K., Hiemke C., Blessing M., Flamez P., Dequenne A., Godaux E., Van Leuven F., Fahrenholz F., 2004, A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer’s disease mouse model. J. Clin. Invest, in press.Google Scholar
  25. Roher A.E., Kuo Y.M., Esh C., Knebel C., Weiss N., Kalback W., Luehrs Childress J.L., Beach T.G., Weller R.O., Kokjohn T.A., 2003, Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer’s disease. Mol. Med.. 9: 112–22.PubMedGoogle Scholar
  26. Selkoe D.J., 2001, Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81: 741–766.PubMedGoogle Scholar
  27. Selkoe D.J., 2002, Alzheimer’s disease is a synaptic failure. Science. 298: 789–791.PubMedCrossRefGoogle Scholar
  28. St. George-Hyslop P.H., 2000, Genetic factors in the genesis of Alzheimer’s Disease. Ann. N. Y. Acad. Sci. 924: 1–7.PubMedCrossRefGoogle Scholar
  29. Terwel D., Dewachter L., Van Leuven F., 2002, Axonal transport, tau protein, and neurodegeneration in Alzheimer’s disease. Nenromolecular Med. 2: 151–165.CrossRefGoogle Scholar
  30. Tesseur I., Van Dorpe J., Bruynseels K., Bronfman F., Sciot R., Van Lommel A., Van Leuven F., 2000, Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am. J. Pathol. 157: 1495–1510.PubMedGoogle Scholar
  31. TesseUr I., Van Dorpe J., Spittaels K., Van den Haute C., Moechars D., Van Leuven F., 2000, Expression of human apolipoprotein E4 in neurons causes hyperphosophorylation of protein tau in the brains of transgenic mice. Am. J. Pathol. 156: 951–964.PubMedGoogle Scholar
  32. Tian J., Shi J., Bailey K., Mann D.M., 2003, Negative association between amyloid plaques and cerebral amyloid angiopathy in Alzheimer’s disease. Neurosci. Lett. 352: 137–140.PubMedCrossRefGoogle Scholar
  33. Van Dorpe J., Smeijers L., Dewachter I., Buyers D., Spittaels K., Van den Haute C., Mercken M., Moechars D., Laenen I., Kuiperi C., Bruynseels K., Tesseur I., Loos R., Vanderstichele H., Checler F., and Van Leuven F., 2000, Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am. J. Pathoi. 157: 1283–98.Google Scholar
  34. Vekrellis K., Ye Z., Qiu W.Q., Walsh D., Hartley D., Chesneau V., Rosner M.R., Selkoe D.J., 2000, Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J. Neurosci. 20: 1657–1665.PubMedGoogle Scholar
  35. Weller R.O., Massey A., Newman T.A., Hutchings M., Kuo Y.M. and Roher A.E., 1998, Amyloid β accumulates in putative interstitial fluid drainage pathways in Alzheimer’s Disease. Am. J. Pathol. 153: 725–733.PubMedGoogle Scholar
  36. Weller R.O. and Nicoll J.A., 2003, Cerebral amyloid angiopathy: pathogenesis and effects on the ageing and Alzheimer brain. Neurol. Res. 25: 611–616.PubMedCrossRefGoogle Scholar
  37. Willem M., Dewachter I., Smyth N., Van Dooren T., Borghgraef P., Haass C., Van Leuven F., 2004, BACE-1 increases amyloid deposition in brain parenchym but reduces cerebrovascular amyloid angiopathy in BACE × APP[V717I] double transgenic mice. Submitted.Google Scholar
  38. Wong P.C., Zheng H., Chen H., Becher M.W., Sirinathsinghji D.J., Trumbauer M.E., Chen H.Y., Price D.L., Van der Ploeg L.H., Sisodia S.S., 1997, Presenilin 1 is required for Notch 1 and DIIl expression in the paraxial mesoderm. Nature 387: 288–292.PubMedCrossRefGoogle Scholar
  39. Wong G.T., Manfra D., Poulet F.M., Zhang Q., Josien H., Bara T., Engstrom L., Pinzon-Ortiz M., Fine J.S., Lee H.J., Zhang L., Higgins G.A., Parker E.M., 2004, Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J. Biol. Chem. 279:12876–12882.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Tom van Dooren
    • 1
  • Ilse Dewachter
    • 1
  • Peter Borghgraef
    • 1
  • Fred van Leuven
    • 1
  1. 1.Experimental Genetics Group, Department of Human GeneticsK.U.LeuvenLeuvenBelgium

Personalised recommendations