Advertisement

Cholesterol and Alzheimer’s Disease: Statins, Cholesterol Depletion in APP Processing and Aβ Generation

  • Tobias Hartman
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 38)

Abstract

Molecular and more specifically subcellular analyses of the neurodegenerative mechanisms involved in Alzheimer’s disease (AD) had been considered most of the time an interplay of proteins and genes. However, some of the observations could not be explained this way. Recently, a number of research groups found the missing link ... lipids! Among the variety of lipids that had been investigated, most investigations had been focused on cholesterol and some derivatives. A recent statistic found that for every primary research article on AD and cholesterol/statins, approximately two reviews were published. This clearly reflects as much the interest in this topic, as it gives evidence that this field is still in its juvenile phase and most aspects have yet to be covered or clarified. To date there is evidently no final answer to whether this approach will eventually provide a therapeutic solution to treat or prevent AD. At the end of the day such answers can only be obtained from clinical studies and to date only two studies with a suitable design have published their results, one of them with preliminary results only. This review focuses on what we know about the cellular mechanisms involved in the AD-lipid connection and what kinds of problematic issues; theoretical and practical, are at hand.

Key words

Cholesterol neurodegeneration amyloid risk factor therapy molecular mechanism disease prevention animal model sub cellular compartments lipid trafficking statin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refferences

  1. Alberts, A. W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapley, E., Albers-Schonberg, G., Hensens, O., Hirshfield, J., Hoogsteen, K., Liesch, J., and Springer, J., 1980, Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A, 77: 3957–3961.PubMedCrossRefGoogle Scholar
  2. Bales, K. R., Verina, T., Cummins, D. J., Du, Y., Dodel, R. C., Saura, J., Fishman, C. E., DeLong, C. A., Piccardo, P., Petegnief, V., Ghetti, B., and Paul, S. M., 1999, Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA, 96: 15233–15238.PubMedCrossRefGoogle Scholar
  3. Bjorkhem, I., and Meaney, S., 2004, Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol, 24: 806–815.PubMedCrossRefGoogle Scholar
  4. Brown, M. S., and Goldstein, J. L., 1999, A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A, 96: 11041–11048.PubMedCrossRefGoogle Scholar
  5. Brown, M. S., Ye, J., Rawson, R. B., and Goldstein, J. L., 2000, Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell, 100: 391–398.PubMedCrossRefGoogle Scholar
  6. Burns, M., Gaynor, K., Olm, V., Mercken, M., LaFrancois, J., Wang, L., Mathews, P. M., Noble, W., Matsuoka, Y., and Duff, K., 2003, Presenilin redistribution associated with aberrant cholesterol transport enhances beta-amyloid production in vivo. J Neurosci, 23: 5645–5649.PubMedGoogle Scholar
  7. Buxbaum, J. D., Cullen, E. I., and Friedhoff, L. T., 2002, Pharmacological concentrations of the HMG-CoA reductase inhibitor lovastatin decrease the formation of the Alzheimer beta-amyloid peptide in vitro and in patients. Front Biosci, 7: a50–59.PubMedGoogle Scholar
  8. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., and Pericak Vance, M. A., 1993, Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261:921–923.PubMedCrossRefGoogle Scholar
  9. Cordy, J. M., Hussain, I., Dingwall, C., Hooper, N. M., and Turner, A. J., 2003, Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci USA, 100: 11735–11740.PubMedCrossRefGoogle Scholar
  10. Cruz, J. C., and Chang, T. Y., 2000, Fate of endogenously synthesized cholesterol in Niemann-Pick type Cl cells. J Biol Chem, 275: 41309–41316.PubMedCrossRefGoogle Scholar
  11. Cruz, J. C., Sugii, S., Yu, C., and Chang, T. Y., 2000, Role of Niemann-Pick type C1 protein in intracellular trafficking of low density lipoprotein-derived cholesterol. J Biol Chem, 275:4013–4021.PubMedCrossRefGoogle Scholar
  12. Dietschy, J. M., and Turley, S. D., 2001, Cholesterol metabolism in the brain. Curr Opin Lipidol, 12: 105–112.PubMedCrossRefGoogle Scholar
  13. Ehehalt, R., Keller, P., Haass, C., Thiele, C., and Simons, K., 2003, Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol, 160: 113–123.PubMedCrossRefGoogle Scholar
  14. Evans, R. M., Hui, S., Perkins, A., Lahiri, D. K., Poirier, J., and Farlow, M. R., 2004, Cholesterol and APOE genotype interact to influence Alzheimer disease progression. Neurology, 62: 1869–1871.PubMedGoogle Scholar
  15. Fassbender, F., Simons, M., Bergmann, C., Stroick, M., Lütjohann, D., Keller, P., Runz, H., Kühl, S., Bertsch, T., von Bergmann, K., Hennerici, M., Beyreuther, K., and Hartmann, T., 2001, Simvastatin strongly reduces Alzheimer’s disease Aβ42 and Aβ40 levels in vitro and in vivo. Proc Natl Acad Sci U S A, 98: 5856–5861.PubMedCrossRefGoogle Scholar
  16. Goritz, C., Mauch, D. H., Nagler, K., and Pfrieger, F. W., 2002, Role of glia-derived cholesterol in synaptogenesis: new revelations in the synapse-glia affair. J Physiol Paris, 96: 257–263.PubMedCrossRefGoogle Scholar
  17. Grimm, H. S., Beher, D., Lichtenthaler, S. F., Shearman, M. S., Beyreuther, K., and Hartmann, T., 2003, gamma-Secretase cleavage site specificity differs for intracellular and secretory amyloid beta. J Biol Chem, 278: 13077–13085.PubMedCrossRefGoogle Scholar
  18. Grziwa, B., Grimm, M. O., Masters, C. L., Beyreuther, K., Hartmann, T., and Lichtenthaler, S. F., 2003, The Transmembrane Domain of the Amyloid Precursor Protein in Microsornal Membranes Is on Both Sides Shorter than Predicted. J Biol Chem, 278: 6803–6808.PubMedCrossRefGoogle Scholar
  19. Hartmann, T., 1999, Intracellular biology of Alzheimer’s disease amyloid beta peptide. Eur Arch Psychiatry Clin Neurosci, 249: 291–298.PubMedCrossRefGoogle Scholar
  20. Hartmann, T., 2001, Cholesterol, Abeta and Alzheimer’s disease. TINS, 24: 45–48.Google Scholar
  21. Hartmann, T., Bieger, S. C., Bruhl, B., Tienari, P. J., Ida, N., Allsop, D., Roberts, G. W., Masters, C. L., Dotti, C. G., Unsicker, K., and Beyreuther, K., 1997, Distinct sites of intracellular production for Alzheimer’s disease A beta40/42 amyloid peptides. Nat-Med, 3: 1016–1020.PubMedCrossRefGoogle Scholar
  22. Hofman, A., Ott, A., Breteler, M. M., Bots, M. L., Slooter, A. J., van Harskamp, F., van Duijn, C. N., Van Broeckhoven, C., and Grobbee, D. E., 1997, Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet, 349: 151–154.PubMedCrossRefGoogle Scholar
  23. Hoglund, K., Wiklund, O., Vanderstichele, H., Eikenberg, O., Vanmechelen, E., and Blennow, K., 2004, Plasma levels of beta-amyloid(1-40), beta-amyloid(1-42), and total beta-amyloid remain unaffected in adult patients with hypercholesterolemia after treatment with statins. Arch Nenrol, 61: 333–337.CrossRefGoogle Scholar
  24. Horsmans, Y., Desager, J. P., and Harvengt, C., 1990, Biochemical changes and morphological alterations of the liver in guinea-pigs after administration of simvastatin (HMG CoA reductase-inhibitor). Pharmacol Toxicol, 67: 336–339.PubMedCrossRefGoogle Scholar
  25. Howland, D. S., Trusko, S. P., Savage, M. J., Reaume, A. G., Lang, D. M., Hirsch, J. D., Maeda, N., Siman, R., Greenberg, B. D., Scott, R. W., and Flood, D. G., 1998, Modulation of secreted beta-amyloid precursor protein and amyloid beta-pep tide in brain by cholesterol. J Biol Chem, 273: 16576–16582.PubMedCrossRefGoogle Scholar
  26. Ishii, K., Tokuda, T., Matsushima, T., Miya, F., Shoji, S., Ikeda, S., and Tamaoka, A., 2003, Pravastatin at 10 mg/day does not decrease plasma levels of either amyloid-beta (Abeta) 40 or Abeta 42 in humans. Neurosci Lett, 350: 161–164.PubMedCrossRefGoogle Scholar
  27. Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., and Drachman, D. A., 2000, Statins and the risk of dementia. Lancet, 356: 1627–1631.PubMedCrossRefGoogle Scholar
  28. Kalaria, R. N., and Ballard, C., 1999, Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis Assoc Disord, 13Suppl 3: S115–123.PubMedCrossRefGoogle Scholar
  29. Kirsch, C., Eckert, G. P., and Mueller, W. E., 2003, Statin effects on cholesterol micro-domains in brain plasma membranes. Biochem Pharmacol, 65: 843–856.PubMedCrossRefGoogle Scholar
  30. Kivipelto, M., Helkala, E. L., Laakso, M. P., Hanninen, T., Hallikainen, M., Alhainen, K., Iivonen, S., Mannermaa, A., Tuomilehto, J., Nissinen, A., and Soininen, H., 2002, Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med, 137: 149–155.PubMedGoogle Scholar
  31. Kivipelto, M., Helkala, E. L., Laakso, M. P., Hanninen, T., Hallikainen, M., Alhainen, K., Soininen, H., Tuomilehto, J., and Nissinen, A., 2001, Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. Bmj, 322: 1447–1451.PubMedCrossRefGoogle Scholar
  32. Kojro, E., Gimpl, G., Lammich, S., März, W., Fahrnholz, F., 2001, Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci USA, 98: 5815–5820.PubMedCrossRefGoogle Scholar
  33. Kolsch, H., Lutjohann, D., Ludwig, M., Schulte, A., Ptok, U., Jessen, F., von Bergmann, K., Rao, M. L., Maier, W., and Heun, R., 2002, Polymorphism in the cholesterol 24S-hydroxylase gene is associated with Alzheimer’s disease. Mol Psychiatry, 7: 899–902.PubMedCrossRefGoogle Scholar
  34. LaDu, M J., Pederson, T. M., Frail, D., Reardon, C. A., Getz, G. S., and Falduto, M. T., 1995, Purification of apolipoprotein E attenuates isoform-specific binding to β-amyloid. J. Biol. Chem., 270: 9039–9042.PubMedCrossRefGoogle Scholar
  35. Langan, T. J., and Volpe, J. J., 1987, Cell cycle-specific requirement for mevalonate, but not for cholesterol, for DNA synthesis in glial primary cultures. J Neurochem, 49: 513–521.PubMedCrossRefGoogle Scholar
  36. Levin-Allerhand, J. A., Lominska, C. E., and Smith, J. D., 2002, Increased amyloid-levels in APPSWE transgenic mice treated chronically with a physiological high-fat high-cholesterol diet. J Nutr Health Aging, 6: 315–319.PubMedGoogle Scholar
  37. Liscum, L., Ruggiero, R. M., and Faust, J. R., 1989, The intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts. J Cell Biol, 108: 1625–1636.PubMedCrossRefGoogle Scholar
  38. Lutjohann, D., and von Bergmann, K., 2003, 24S-hydroxycholesterol: a marker of brain cholesterol metabolism. Pharmacopsychiatry, 36Suppl 2: S102–106.PubMedGoogle Scholar
  39. Ma, J., Yee, A., Brewer, H. B., Das, S., and Potter, H., 1994, Amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature, 372: 92–94.PubMedCrossRefGoogle Scholar
  40. Marlow, L., Cain, M., Pappolla, M. A., and Sambamurti, K., 2003, Beta-secretase processing of the Alzheimer’s amyloid protein precursor (APP). J Mol Neurosci, 20: 233–239.PubMedCrossRefGoogle Scholar
  41. Mauch, D. H., Nagler, K., Schumacher, S., Goritz, C., Muller, E. C., Otto, A., and Pfrieger, F. W., 2001, CNS synaptogenesis promoted by glia-derived cholesterol. Science, 294: 1354–1357.PubMedCrossRefGoogle Scholar
  42. Meske, V., Albert, F., Richter, D., Schwarze, J., and Ohm, T. G., 2003, Blockade of HMG-CoA reductase activity causes changes in microtubule-stabilizing protein tau via suppression of geranylgeranylpyrophosphate formation: implications for Alzheimer’s disease. Eur J Neurosci, 17: 93–102.PubMedCrossRefGoogle Scholar
  43. Näslund, J., Thyberg, J., Tjernberg, L. O., Wernstedt, C., Karlström, A. R., Bogdanovic, N., Gandy, S. E., Lannfelt, L., Terenius, L., and Nordstedt, C., 1995, Characterization of stable complexes involving apolipoprotein E and the amyloid β peptide in Alzheimer’s disease brain. Neuron, 15: 219–228.PubMedCrossRefGoogle Scholar
  44. Papassotiropoulos, A., Lutjohann, D., Bagli, M., Locatelli, S., Jessen, F., Buschfort, R., Ptok, U., Bjorkhem, I., von Bergmann, K., and Heun, R., 2002, 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J Psychiatr Res, 36: 27–32.PubMedCrossRefGoogle Scholar
  45. Papassotiropoulos, A., Streffer, J. R., Tsolaki, M., Schmid, S., Thal, D., Nicosia, F., Iakovidou, V., Maddalena, A., Lutjohann, D., Ghebremedhin, E., Hegi, T., Pasch, T., Traxler, M., Bruhl, A., Benussi, L., Binetti, G., Braak, H., Nitsch, R. M., and Hock, C., 2003, Increased brain beta-amyloid load, phosphorylated tau, and risk of Alzheimer disease associated with an intronic CYP46 polymorphism. Arch Neurol, 60: 29–35.PubMedCrossRefGoogle Scholar
  46. Pappolla, M. A., Bryant-Thomas, T. K., Herbert, D., Pacheco, J., Fabra Garcia, M., Manjon, M., Girones, X., Henry, T. L., Matsubara, E., Zambon, D., Wolozin, B., Sano, M., Cruz-Sanchez, F. F., Thal, L. J., Petanceska, S. S., and Refolo, L. M., 2003, Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology, 61: 199–205.PubMedGoogle Scholar
  47. Park, I. H., Hwang, E. M., Hong, H. S., Boo, J. H., Oh, S. S., Lee, J., Jung, M. W., Bang, O. Y., Kim, S. U., and Mook-Jung, I., 2003, Lovastatin enhances Abeta production and senile plaque deposition in female Tg2576 mice. Neurobiol Aging, 24: 637–643.PubMedCrossRefGoogle Scholar
  48. Petanceska, S. S., DeRosa, S., Sharma, A., Diaz, N., Duff, K., Tint, S. G., Refolo, L. M., and Pappolla, M., 2003, Changes in apolipoprotein E expression in response to dietary and pharmacological modulation of cholesterol. J Mol Neurosci, 20: 395–406.PubMedCrossRefGoogle Scholar
  49. Pfrieger, F. W., 2003a, Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci, 60: 1158–1171.PubMedGoogle Scholar
  50. Pfrieger, F. W., 2003b, Role of cholesterol in synapse formation and function. Biochim Biophys Acta, 1610: 271–280.PubMedCrossRefGoogle Scholar
  51. Puglielli, L., Konopka, G., Pack-Chung, E., Ingano, L. A., Berezovska, O., Hyman, B. T., Chang, T. Y., Tanzi, R. E., and Kovacs, D. M., 2001, Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol, 3: 905–912.PubMedCrossRefGoogle Scholar
  52. Rao, S., Porter, D. C., Chen, X., Herliczek, T., Lowe, M., and Keyomarsi, K., 1999, Lovastatin-mediated Gl arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. Proc Natl Acad Sci USA, 96: 7797–7802.PubMedCrossRefGoogle Scholar
  53. Refolo, L. M., Pappolla, M. A., LaFrancois, J., Malester, B., Schmidt, S. D., Thomas-Bryant, T., Tint, G. S., Wang, R., Mercken, M., Petanceska, S. S., and Duff, K. E., 2001, A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis, 8: 890–899.PubMedCrossRefGoogle Scholar
  54. Refolo, L. M., Pappolla, M. A., Malester, B., LaFrancois, J., Bryant-Thomas, T., Wang, R., Tint, G. S., Sambamurti, K., and Duff, K., 2000, Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis, 7: 321–331.PubMedCrossRefGoogle Scholar
  55. Riddell, D. R., Christie, G., Hussain, I., and Dingwall, C., 2001, Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol, 11: 1288–1293.PubMedCrossRefGoogle Scholar
  56. Rockwood, K., Kirkland, S., Hogan, D. B., MacKnight, C., Merry, H., Verreault, R., Wolfson, C., and McDowell, I., 2002, Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol, 59: 223–227.PubMedCrossRefGoogle Scholar
  57. Runz, H., Rietdorf, J., Tomic, I., de Bernard, M., Beyreuther, K., Pepperkok, R., and Hartmann, T., 2002, Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci, 22: 1679–1689.PubMedGoogle Scholar
  58. Sawamura, N., Gong, J. S., Chang, T. Y., Yanagisawa, K., and Michikawa, M., 2003, Promotion of tau phosphorylation by MAP kinase Erkl/2 is accompanied by reduced cholesterol level in detergent-insoluble membrane fraction in Niemann-Pick Cl-deficient cells. J Neurochem, 84: 1086–1096.PubMedCrossRefGoogle Scholar
  59. Schonknecht, P., Lutjohann, D., Pantel, J., Bardenheuer, H., Hartmann, T., von Bergmann, K., Beyreuther, K., and Schroder, J., 2002, Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer’s disease compared to healthy controls. Neurosci Lett, 324: 83–85.PubMedCrossRefGoogle Scholar
  60. Shepherd, J., Blauw, G. J., Murphy, M. B., Bollen, E. L., Buckley, B. M., Cobbe, S. M., Ford, I., Gaw, A., Hyland, M., Jukema, J. W., Kamper, A. M., Macfarlane, P. W., Meinders, A. E., Norrie, J., Packard, C. J., Perry, I. J., Stott, D. J., Sweeney, B. J., Twomey, C., and Westendorp, R. G., 2002, Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet, 360: 1623–1630.PubMedCrossRefGoogle Scholar
  61. Shie, F. S., Jin, L. W., Cook, D. G., Leverenz, J. B., and LeBoeuf, R. C., 2002, Diet-induced hypercholesterolemia enhances brain A beta accumulation in transgenic mice. Neuroreport, 13: 455–459.PubMedCrossRefGoogle Scholar
  62. Simons, K., and Ikonen, E., 1997, Functional rafts in cell membranes. Nature, 387: 569–572.PubMedCrossRefGoogle Scholar
  63. Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., and Simons, K., 1998, Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA, 95: 6460–6464.PubMedCrossRefGoogle Scholar
  64. Simons, M., Schwarzler, F., Lutjohann, D., von Bergmann, K., Beyreuther, K., Dichgans, J., Wormstall, H., Hartmann, T., and Schulz, J. B., 2002, Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: A 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol, 52: 346–350.PubMedCrossRefGoogle Scholar
  65. Sjogren, M., Gustafsson, K., Syversen, S., Olsson, A., Edman, A., Davidsson, P., Wallin, A., and Blennow, K., 2003, Treatment with simvastatin in patients with Alzheimer’s disease lowers both alpha-and beta-cleaved amyloid precursor protein. Dement Geriatr Cogn Disord, 16: 25–30.PubMedCrossRefGoogle Scholar
  66. Sparks, D. L., 1996, Intraneuronal beta-amyloid immunoreactivity in the CNS. Neurobiol Aging, 17:291–299.PubMedCrossRefGoogle Scholar
  67. Sparks, D. L., Scheff, S. W., Hunsaker, J. C., 3rd, Liu, H., Landers, T., and Gross, D. R., 1994, Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol, 126: 88–94.PubMedCrossRefGoogle Scholar
  68. St George-Hyslop, P. H., 2000, Molecular genetics of Alzheimer’s disease. Biol Psychiatry, 47: 183–199.PubMedCrossRefGoogle Scholar
  69. Tienari, P. J., De Strooper, B., Ikonen, E., Simons, M., Weidemann, A., Czech, C., Hartmann, T., Ida, N., Multhaup, G., Masters, C. L., Van Leuven, F., Beyreuther, K., and Dotti, C. G., 1996, The beta-amyloid domain is essential for axonal sorting of amyloid precursor protein. Embo J, 15: 5218–5229.PubMedGoogle Scholar
  70. Wisniewski, T., Castaño, E. M., Golabek, A., Vogel, T., and Frangione, B., 1994, Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vivo. Am. J. Pathol, 145: 1030–1035.PubMedGoogle Scholar
  71. Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., and Siegel, G., 2000, Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol, 57: 1439–1443.PubMedCrossRefGoogle Scholar
  72. Yamazaki, T., Chang, T. Y., Haass, C., and Ihara, Y., 2001, Accumulation and aggregation of amyloid beta-protein in late endosomes of Niemann-pick type C cells. J Biol Chem, 276: 4454–4460.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Tobias Hartman
    • 1
  1. 1.Center for Molecular Biology Heidelberg (ZMBH)university of HeidelbergHeidelbergGermany

Personalised recommendations