Advertisement

Acetylcholinesterase Interaction with Alzheimer Amyloid β

  • Nibaldo C. Inestrosa
  • Juan Paulo Sagal
  • Marcela Colombres
Part of the Subcellular Biochemistry book series (SCBI, volume 38)

Abstract

Acetylcholinesterase (AChE) is an enzyme involved in cholinergic and non-cholinergic functions in both the central and peripheral nervous system, most of the AChE is found as a tetrameric form bound to neuronal membranes. Early cytochemical studies have demonstrated that the AChE associated with senile plaques differs enzymatically from the AChE associated with neurons in several respects. Biochemical studies indicated that AChE induces amyloid fibril formation and form highly toxic AChE-Aβ complexes. A 3.5 kDa peptide containing a tryptophan of the enzyme peripheral binding site (PAS) mimics the effect of the whole enzyme on amyloid formation. The neurotoxicity induced by AChE-Aβ complexes indicated that they trigger more neurodegeneration than those of the Aβ peptide alone, both in vitro (hippocampal neurons) and in vivo (rats injected in the dorsal hippocampus as a model of Alzheimer). The fact that AChE is able to accelerate amyloid formation and that such effect is sensitive to drugs that block. PAS of the enzyme, suggests that specific and new AChE inhibitors may well provide an attractive possibility for treating Alzheimer’s disease.

Key words

Amyloid β peptide (Aβ) Acetylcholinesterase (AChE) Alzheimer’s Disease (AD) Peripheral Anionic Site (PAS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarcón, R., 1999, Studies of the association and enzymatic behaviour of the Acetylcholinesterase present in the amyloid β-peptide fibers. M.Sc. Thesis, Dept. Biochemistry, University of Chile.Google Scholar
  2. Alvarez, A., Opazo, C., Alarcón, R., Garrido, J., and Inestrosa, N.C., 1997, Acetylcholinesterase promotes the aggregation of amyloid-β-peptide fragments by forming a complex with the growing fibrils. J. Mol. Biol. 272: 348–361.PubMedCrossRefGoogle Scholar
  3. Alvarez, A., Alarcón, R., Opazo, C., Campos, E.O., Muñoz, F.J, Calderón F.H., Dajas, F., Gentry, M.K., Bhupendra, P. Doctor, De Mello, F.G., and Inestrosa, N.C., 1998, Stable complexes involving acetylcholinesterase and amyloid-β peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils. J. Neurosci. 18:3213–3223.PubMedGoogle Scholar
  4. Alvarez, A., Godoy, J.A., Mullendorff, K., Olivares, G.H., Bronfman, M., and Inestrosa, N.C., 2004, Wnt-3a overcomes β-amyloid toxicity in rat hippocampal neurons. Exp. Cell Res. (In press).Google Scholar
  5. Atack, J.R., Perry, E.K., Bonham, J.R., Perry, R.H., Tomlinson, B.E., Candy, J., Blessed, G., and Fairbairn, A., 1983, Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10S) form. Neurosci. Lett. 40: 199–204.PubMedCrossRefGoogle Scholar
  6. Beeri, R., Andres, C., Lev-Lehman, E., Timberg, R., Huberman, T., Shani, M., and Soreq, H., 1995, Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice. Curr. Biol. 9: 1063–1071.CrossRefGoogle Scholar
  7. Bigbee, J.W., Sharma, K.V., Chan, E.L., and Bogler, O., 2000, Evidence for the direct role of acetylcholinesterase in neurite outgrowth in primary dorsal root ganglion neurons. Brain Res. 861: 354–362.PubMedCrossRefGoogle Scholar
  8. Bronfman, F.C., Fernández, H.L., and Inestrosa, N.C., 1996, Amyloid precursor protein fragment and acetylcholinesterase increase with cell confluence and differentiation in a neuronal cell line. Exp. Cell Res. 229: 93–99.PubMedCrossRefGoogle Scholar
  9. Calderón, F.H., von Bernhardi, R., De Ferrari, G., Luza, S., Aldunate, R., and Inestrosa, N.C., 1998, Toxic effects of acetylcholinesterase on neuronal and glial-like cells in vitro. Mol. Psychiatry 3:247–255.PubMedCrossRefGoogle Scholar
  10. Chacón, M.A., Reyes, A.E., and Inestrosa, N.C., 2003, Acetylcholinesterase induces neuronal cell loss, astrocyte hypertrophy and behavioral deficits in mammalian hippocampus. J. Neurochem. 87: 195–204.PubMedCrossRefGoogle Scholar
  11. Cohen, O., Erb, C., Ginzberg, D., Pollak, Y., Seidman, S., Shoham, S., Yirmiya, R., and Soreq, H., 2002, Neuronal overexpression of readthrough acetylcholinesterase is associated with antisense-supressible behavioral impairments. Mol. Psychiatry 7: 874–885.PubMedCrossRefGoogle Scholar
  12. Cohen, O., Kronman, C., Chitlaru, T., Ordentlich, A., Velan, B., and Shafferman A., 2001, Effect of chemical modification of recombinant human acetylcholinesterase by polyethylene glycol on its circulatory longevity. Biochem. J. 357: 795–802.PubMedCrossRefGoogle Scholar
  13. Colombres, M., Sagal, J.P., and Inestrosa, N.C., 2004, An Overview of the Current and Novel Drugs for Alzheimer’s Disease with particular reference to anti-cholinesterase compounds. Curr. Pharmacol. Design, In Press.Google Scholar
  14. Cottingham, M.G., Hollinshead, M.S., and Vaux, D.J., 2002, Amyloid fibril formation by a synthetic peptide from a region of human acetylcholinesterase that is homologous to the Alzheimer’s amyloid-β peptide. Biochemistry 41: 13539–13547.PubMedCrossRefGoogle Scholar
  15. Day, T., and Greenfield, S.A., 2003, A peptide derived from acetylcholinesterase induces neuronal cell death: characterisation of possible mechanisms. Exp. Brain Res. 153: 334–342.PubMedCrossRefGoogle Scholar
  16. De Ferrari, G.V., and Inestrosa, N.C., 2000, Wnt signaling function in Alzheimer’s disease. Brain Res. Rev. 33: 1–12.PubMedCrossRefGoogle Scholar
  17. De Ferrari, G.V., Canales, M.A., Shin, I., Weiner, L.M., Silman, I., and Inestrosa, N.C., 2001, A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry 40: 10447–10457.PubMedCrossRefGoogle Scholar
  18. De Ferrari, G.V., Chacón, M.A., Barría, M.I., Garrido, J.L., Godoy, J.A., Olivares, G., Reyes, A.E., Alvarez, A., Bronfman, M., and Inestrosa, N.C., 2003, Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils. Mol. Psychiatry 8: 195–208.PubMedCrossRefGoogle Scholar
  19. Fishman, E.B., Siek, G.C., MacCallum, R.D., Bird, E.D., Volicer, L., and Marquis, J.K., 1986, Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann. Nenrol. 19: 246–252.CrossRefGoogle Scholar
  20. Geula, C., and Mesulam, M.M., 1989, Special properties of cholinesterase in the cerebral cortex of Alzheimer’s disease. Brain Res. 498: 185–189.PubMedCrossRefGoogle Scholar
  21. Geula, C., and Mesulam, M.M., 1994, Cholinergic systems and related neuropathological predilection patterns in Alzheimer disease. In: Alzheimer Disease (Terry, R.D., Katzman, R. and Bick, K.L., eds.), pp. 263–291, Raven Press, New York.Google Scholar
  22. Greenfield, S., and Vaux, D.J., 2002. Parkinson’s disease, Alzheimer’s disease and motor neurone disease: identifying a common mechanism. Neurosci. 113: 485–492.CrossRefGoogle Scholar
  23. Grisaru, D., Sternfeld, M., Eldor, A., Glick, D., and Soreq, H., 1999, Structural roles of acetylcholinesterase variants in biology and pathology. Eur. J. Biochem. 264: 672-686.Google Scholar
  24. Hyman, B.T., Van Horsen, G.W., Damasio, A.R., and Barnes, C.L., 1984, Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225: 1168–1170.PubMedCrossRefGoogle Scholar
  25. Inestrosa, N.C., Roberts, W.L., Marshall, T.D., and Rosenberry, T.L., 1987), Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues. J. Biol. Chem. 262: 4441–4444.PubMedGoogle Scholar
  26. Inestrosa, N.C., and Perelman, A., 1989, Distribution and anchoring of the molecular forms of acetylcholinesterase. Trends Pharmacol. Sci. 10: 325–329.PubMedCrossRefGoogle Scholar
  27. Inestrosa, N.C., Alvarez, A., Perez, C.A., Moreno, R.D., Vicente, M., Linker, C., Casanueva, O.I., Soto, C., and Garrido, J., 1996, Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16: 881–891.PubMedCrossRefGoogle Scholar
  28. Inestrosa, N.C., Alvarez, A., Garrido, J., Calderón, F., Bronfman, F.C., Dajas, F., Gentry, M.K., and Doctor, B.P., 1997, Acetylcholinesterase promotes Alzheimer β-amyloid Fibril Formation. In: Alzheimer’s Disease: Biology, Diagnosis and Therapeutics, (K. Iqbal, B. Winblad, T. Nishimura, M. Takeda, H.M. Wisniewski, Eds.), pp. 499–508, J. Wiley & Sons Ltd., London, U.K.Google Scholar
  29. Inestrosa, N.C., and Alarcón, R., 1998, Molecular interactions of acetylcholinesterase with senile plaques. J. Physiol. (Paris) 92: 341–344.CrossRefGoogle Scholar
  30. Inestrosa, N.C., and Reyes, A.E., 1998, Acetylcholinesterase induces amyloid formation and increases neurotoxicity of Alzheimer’s fibrils. Neurobiol Aging 19: S44 (Abst).Google Scholar
  31. Inestrosa, N.C., De Ferrari, G.V., Garrido, J.L., Alvarez, A., Olivares, G.H., Barría, M.I., Bronfman, M., and Chacon, M.A., 2002, Wnt signaling involvement in β-amyloid-dependent neurodegeneration. Neurochem. Int. 41: 341–344.PubMedCrossRefGoogle Scholar
  32. Inestrosa, N.C., De Ferrari G.V., Opazo, C., and Alvarez A., 2004a, Neurodegenerative processes in Alzheimer’s disease: role of Aβ-AChE complexes and Wnt signaling. In: XIth International Symposium on Cholinergic Mechanisms, (Silman, I., Soreq, H. Fisher, A., and Anglister L, eds.), St. Moritz, Switzerland, Ch. 51 (In Press).Google Scholar
  33. Inestrosa, N.C., Urra, M.S., and Colombres, C., 2004b, Acetylcholinesterase (AChE)-amyloid-β-peptide complexes in Alzheimer’s Disease. The Wnt signaling pathway connection. Curr. Alzheimer Res. (In Press).Google Scholar
  34. Jarrett, J.T., and Lansbury, P.T. Jr., 1992, Amyloid fibril formation requires a chemically discriminating nucleation event: studies of an amyloidogenic sequence from the bacterial protein OsmB. Biochemistry 31: 12345–12352.PubMedCrossRefGoogle Scholar
  35. Johnson, G., and Moore, S.W., 1999, The adhesion function on acetylcholinesterase is located at the peripheral anionic site. Biochem. Biophys. Res. Commun. 258: 758–762.PubMedCrossRefGoogle Scholar
  36. Kalaria, R.N., Kroon, S.N., Grahovac, I., and Perry, G., 1992, Acetylcholinesterase and its association with heparan sulphate proteoglycans in cortical amyloid deposits of Alzheimer’s disease. Neurosci. 51: 177–184.CrossRefGoogle Scholar
  37. Kasa, P., Rakonczay, Z., and Gulya, K., 1997, The cholinergic system in Alzheimer’s disease. Prog. Neurobiol. 52: 511–535.PubMedCrossRefGoogle Scholar
  38. Kronman, C., Velan, B., Gozes, Y., Leitner, M., Flashner, Y., Lazar, A., Marcus, D., Sery, T., Papier, Y., Grosfeld, H., Cohen, S., and Shafferman, A., 1992, Production and secretion of high levels of recombinant human acetylcholinesterase in cultured cell lines: microheterogeneity of the catalytic subunit. Gene 121: 295–304.PubMedCrossRefGoogle Scholar
  39. Layer, P.G., Weikert, T., and Alber, R., 1993, Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell Tissue Res. 273: 219–226.PubMedCrossRefGoogle Scholar
  40. Massoulie, J., Pezzementi, L., Bon, S, Krejci, E., and Vallette, F.M., 1993, Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 41: 31–91.PubMedCrossRefGoogle Scholar
  41. Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., and Beyreuther, K., 1985, Amyloid plaque protein in Alzheimer disease and Down’s syndrome. Proc. Natl. Acad. Sci. USA 82: 4245–4249.PubMedCrossRefGoogle Scholar
  42. Muñoz, F.J., and Inestrosa, N.C.,1999, Neurotoxicity of acetylcholinesterase-amyloid β-peptide aggregates is dependent on the type of Aβ-peptide and the AChE concentration present in the complexes. FEBS Lett. 450: 205–209.PubMedCrossRefGoogle Scholar
  43. Muñoz, F.J., Aldunate, R., and Inestrosa, N.C., 1999, Peripheral binding site is involved in the neurotrophic activity of acetylcholinesterase. NeuroReport 10: 3621–3625.PubMedCrossRefGoogle Scholar
  44. Muñoz, F.J., Opazo, C., Gil-Gómez, G., Tapia, G., Fernández, V., Valverde, M.A., and Inestrosa, N.C., 2002, Vitamin E but not 17β-Estradiol protects against vascular toxicity induced by β-amyloid wild-type and the Dutch amyloid variant. J. Neurosci. 22: 3081–3089.PubMedGoogle Scholar
  45. Opazo, C., and Inestrosa, N.C., 1998, Crosslinking of amyloid-β peptide to brain acetylcholinesterase. Mol. Chem. Neuropathol. 33: 39–49.PubMedGoogle Scholar
  46. Rees, T., Hammond, P.I., Soreq, H., Younkin, S., and Brimijoin, S., 2003, Acetylcholinesterase promotes β-amyloid plaques in cerebral cortex. Neurobiol. Aging 24: 777–787.PubMedCrossRefGoogle Scholar
  47. Reyes, A.E., Pérez, D.R., Alvarez, A., Garrido, J., Gentry, M.K., Doctor, B.P., and Inestrosa, N.C., 1997, A monoclonal antibody against acetylcholinesterase inhibits the formation of amyloid fibrils induced by the enzyme. Biochem. Biophys. Res. Commun. 232: 652–655.PubMedCrossRefGoogle Scholar
  48. Reyes, A.E. Chacón, M.A., Dinamarca, M.C., Cerpa, W., Morgan, C., and Inestrosa, N.C., 2004, Acetylcholinesterase-Aβ complexes are more toxic than Aβ fibrils in rat hippocampus: Effect on rat β-amyloid aggregation, laminin expression, reactive astrocytosis and neuronal cell loss. Am. J. Pathol. (In Press).Google Scholar
  49. Roher, A. E., Wolfe, D., Palutke, M., and Kukurga, D., 1986, Purification, ultrastructure, and chemical analysis of Alzheimer disease amyloid plaque core protein. Proc. Natl. Acad. Sci. USA 83: 2662–2666.PubMedCrossRefGoogle Scholar
  50. Selkoe, D.J., 2001, Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 8: 741–766.Google Scholar
  51. Shin, I., Silman, I., and Weiner, L.M., 1996, Interaction of partially unfolded forms of Torpedo acetylcholinesterase with liposomes. Protein Sci. 5: 42–51.PubMedCrossRefGoogle Scholar
  52. Soto, C., Brañes, M.C., Alvarez, J., and Inestrosa, N.C., 1994, Structural determinants of the Alzheimer’s amyloid β-peptide. J. Neurochem. 63: 1191–1198.PubMedCrossRefGoogle Scholar
  53. Soto, C., Castaño, E., Frangione, B., and Inestrosa, N.C., 1995, The α-helical to β-strand transition in the amino-terminal fragment of the amyloid β-peptide modulates amyloid formation. J. Biol. Chem. 270: 3063–3067.PubMedCrossRefGoogle Scholar
  54. Talesa, V.N., 2001, Acetylcholinesterase in Alzheimer’s disease. Mech. Ageing Devel. 122: 1961–1969.CrossRefGoogle Scholar
  55. Tumiatti, V., Rosini, M., Bartolini, M., Cavalli, A., Marucci, G., Andrisano, V., Angeli, P., Banzi, R., Minarini, A., Recanatini, M., and Melchiorre, C., 2003, Structure-Activity Relationships of Acetylcholinesterase Noncovalent Inhibitors Based on a Polyamine Backbone. 2. Role of the Substituents on the Phenyl Ring and Nitrogen Atoms of Caproctamine. J. Med. Chem. 46: 954–966.PubMedCrossRefGoogle Scholar
  56. Ulrich, J., Meier-Ruge, W., Probst, A., Meier, E., and Ipsen, S., 1990, Senile plaques: staining for acetylcholinesterase and A4 protein. A comparative study in the hippocampus and entorhinal cortex. Ascta Neuropathol. 80: 624–628.CrossRefGoogle Scholar
  57. Younkin, S.G., Goodridge, B., Katz, J., Lockett, G., Nafziger, D., Usiak, M.F., and Younkin, L.H., 1986, Molecular forms of acetylcholinesterase in Alzheimer’s disease. Fed. Proc. 45: 2982–2988.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Nibaldo C. Inestrosa
    • 1
  • Juan Paulo Sagal
    • 1
  • Marcela Colombres
    • 1
  1. 1.FONDA-Biomedical CenterP. Catholic University of ChileSantiagoChile

Personalised recommendations