Skip to main content

Amyloid-β Metal Interaction and Metal Chelation

  • Chapter
Alzheimer’s Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 38))

Abstract

Alzheimer’s disease (AD) is associated with the abnormal aggregation of amyloid-beta (Aβ) protein. Aβ and its precursor protein (APP) interact with metal ions such as zinc, copper and iron. Evidence shows that these metals play a role in the precipitation and cytotoxicity of Aβ. Despite recent advances in AD research, there is a lack of therapeutic agents to hinder the apparent aggregation and toxicity of Aβ. Recent studies show that drugs with metal chelating properties could produce a significant reversal of amyloid-β plaque deposition in vitro and in vivo. Here we discuss the interaction of Aβ with metals, metal dyshomeostasis in the CNS of patients with AD, and the potential therapeutic effects of metal chelators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arendt, T., Bigl, V., Tennstedt, A., and Arendt, A., 1984, Correlation between cortical plaque count and neuronal loss in the nucleus basalis in Alzheimer’s disease. Neurosci. Lett. 48: 81–85.

    PubMed  CAS  Google Scholar 

  • Armstrong, C., Leong, W., and Lees, G.J., 2001, Comparative effects of metal chelating agents on the neuronal cytotoxicity induced by copper (cu+2), iron (fe+3) and zinc in the hippocampus. Brain Res. 892: 51–62.

    Article  PubMed  CAS  Google Scholar 

  • Atwood, C.S., Scarpa, R.C., Huang, X., Moir, R.D., Jones, W.D., Fairlie, D.P., Tanzi, R.E., and Bush, A.I., 2000a, Characterization of copper interactions with Alzheimer amyloid beta peptides: Identification of an attomolar-affmity copper binding site on amyloid beta l-42. J. Neurochem. 75: 1219–1233.

    Article  PubMed  CAS  Google Scholar 

  • Atwood, C.S., Moir, R.D., Huang, X., Scarpa, R.C., Bacarra, N.M, Romano, D.M., Hartshorn, M.A., Tanzi, R.E., and Bush, A.I., 1998, Dramatic aggregation of Alzheimer abeta by cu(ii) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273: 12817–12826.

    Article  PubMed  CAS  Google Scholar 

  • Atwood, C.S., Huang, X., Khatri, A., Scarpa, R.C., Kim, Y.S., Moir, R.D., Tanzi, R.E., Roher, A.E., and Bush, A.I., 2000b, Copper catalyzed oxidation of Alzheimer abeta. Cell. Mol. Biol. 46: 777–783.

    PubMed  CAS  Google Scholar 

  • Basun, H., Forssell, L, G, Wetterberg, L, and Winblad, B., 1991, Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J. Neural Transm. Park. Dis. Dement. Sect. 3: 231–258.

    PubMed  CAS  Google Scholar 

  • Behl, C., Davis, J.B., Lesley, R., and Schubert, D., 1994, Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817–827.

    Article  PubMed  CAS  Google Scholar 

  • Bertram, L., Blacker, D., Mullin, K., Keeney, D., Jones, J., Basu, S., Yhu, S., McInnis, M.G., Go, R.C., Vekrellis, K., Selkoe, D.J., Saunders, A.J., and Tanzi, R.E., 2000, Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q. Science 290: 2302–2303.

    Article  PubMed  CAS  Google Scholar 

  • Blacker, D., Wilcox, M.A., Laird, N.M., Rodes, L., Horvath, S.M., Go, R.C., Perry, R., Watson, B., Jr., Bassett, S.S., McIlnnis, M.G., Albert, M.S., Hyman, B.T., and Tanzi, R.E., 1998, Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nature Genet. 19: 357–360.

    Article  PubMed  CAS  Google Scholar 

  • Borchardt, T., Camakaris, J., Cappai, R., Masters, C.L., Beyreuther, K., and Multhaup, G., 1999, Copper inhibits beta-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion. Biochem. J. 344: 461–467.

    Article  PubMed  CAS  Google Scholar 

  • Borchardt, T., Schmidt, C., Camarkis, J., Cappai, R., Masters, C.L., Beyreuther, K., and Multhaup, G., 2000, Differential effects of zinc on amyloid precursor protein (app) processing in copper-resistant variants of cultured Chinese hamster ovary cells. Cell. Mol. Biol. 46: 785–795.

    PubMed  CAS  Google Scholar 

  • Brown, A.M., Tummolo, D.M., Rhodes, K.J., Hofmann, J.R., Jacobsen, J.S., and Sonnenberg-Reines, J., 1997, Selective aggregation of endogenous beta-amyloid peptide and soluble amyloid precursor protein in cerebrospinal fluid by zinc. J. Neurochem. 69: 1204–1212.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, A.J., Malfroy, B., Baudry, M., 1996, Beta-amyloid toxicity in organotypic hippocampal cultures: Protection by euk-8, a synthetic catalytic free radical scavenger. Proc. Natl. Acad. Sci. USA. 93: 2312–2316.

    Article  PubMed  CAS  Google Scholar 

  • Bush, A.I., Pettingell, W.H., Jr., de Paradis, M., Tanzi, R.E., and Wasco, W., 1994a, The amyloid beta-protein precursor and its mammalian homologues. Evidence for a zinc-modulated heparin-binding superfamily. J. Biol. Chem. 269: 26618–26621.

    PubMed  CAS  Google Scholar 

  • Bush, A.I., Multhaup, G., Moir, R.D., Williamson, T.G., Small, D.H., Rumble, B., Pollwein, P., Beyreuther, K., and Masters, C.L, 1993, A novel zinc(ii) binding site modulates the function of the beta a4 amyloid protein precursor of alzheimer’s disease. J. Biol. Chem. 268: 16109–16112.

    PubMed  CAS  Google Scholar 

  • Bush AI, Pettingell, WH, Multhaup, G, d Paradis, M, Vonsattel, JP, Gusella, JF, Beyreuther, K, Masters, CL, Tanzi, RE (1994b) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265:1464–1467.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, D.A., and Lauderback, C.M., 2002, Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic. Biol. Med. 32: 1050–1060.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, D.A., Yatin, S.M., and Link, C.D., 1999a, In vitro and in vivo protein oxidation induced by Alzheimer’s disease amyloid beta-peptide (1-42). Ann. N.Y. Acad. Sci. 893: 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, D.A., Koppal, T., Subramaniam, R., and Yatin, S., 1999b, Vitamin e as an antioxidant/free radical scavenger against amyloid beta-peptide-induced oxidative stress in neocortical synaptosomal membranes and hippocampal neurons in culture: Insights into Alzheimer’s disease. Rev. Neurosci. 10: 141–149.

    PubMed  CAS  Google Scholar 

  • Butterfield, D.A., Castegna, A., Lauderback, CM., and Drake, J., 2002a, Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobioi Aging 23: 655–664.

    Article  Google Scholar 

  • Butterfield, D.A., Griffin, S., Munch, G., and Pasinetti, G.M., 2002b, Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which alzheimer’s disease brain exists. J. Alzheimer’s Dis. 4: 193–201.

    CAS  Google Scholar 

  • Cherny, R.A., Legg, J.T., McLean, C.A., Fairlie, D.P, Huang, X., Atwood, C.S., Beyreuther, K, Tanzi, R.E., Masters, C.L., and Bush, A.I., 1999, Aqueous dissolution of Alzheimer’s disease a.beta amyloid deposits by biometal depletion. J. Biol. Chem. 274: 23223–23228.

    Article  PubMed  CAS  Google Scholar 

  • Cherny, R.A., Atwood, C.S., Xilinas, M.E., Gray, D.N, Jones, W.D., McLean, C.A., Barnham, K.J., Volitakis, I., Fraser, F.W., Kim, Y., Huang, X., Goldstein, L.E., Moir, R.D., Lim, J.T., Beyreuther, K., Zheng, H., Tanzi, R.E., Masters, C.L., and Bush, A.I., 2001, Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in alzheimer’s disease transgenic mice. Neuron 30: 665–676.

    Article  PubMed  CAS  Google Scholar 

  • Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A, Y., Seubert, P., Vigo-Pelfrey, C., Lieberburg, I., and Selkoe, D.J., 1992, Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360: 672–674.

    Article  PubMed  CAS  Google Scholar 

  • Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A., Kholodenko, D., Motter, R., Sherrington, R., Perry, B., Yao, H, Strome, R, Lieberburg, I, Rommens, J, Kim, S, Schenk, D, Fraser, P, St George Hyslop, P., and Selkoe, D.J., 1997, Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nature Med. 3: 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Connor, J.R., Menzies, S.L., St Martin, S.M., and Mufson, E.J., 1992, A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J. Neurosci. Res. 31: 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Constantinidis, J., 1991a, The hypothesis of zinc deficiency in the pathogenesis of neurofibrillary tangles. Med. Hypoth. 35: 319–323.

    Article  CAS  Google Scholar 

  • Constantinidis, J., 1991b, Hypothesis regarding amyloid and zinc in the pathogenesis of Alzheimer disease: Potential for preventive intervention. Alzheimer Dis. Assoc. Disord. 5: 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Cornett, C.R., Markesbery, W.R., and Ehmann, W.D., 1998a, Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicol. 19: 339–345.

    CAS  Google Scholar 

  • Cornett, C.R., Ehmann, W.D., Wekstein, D.R, and Markesbery, W.R, 1998b, Trace elements in Alzheimer’s disease pituitary glands. Biol. Trace Elem. Res. 62: 107–114.

    PubMed  CAS  Google Scholar 

  • Corrigan, F.M., Reynolds, G.P., Ward, N.I., 1993, Hippocampal tin, aluminum and zinc in Alzheimer’s disease. Biometals 6: 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Crapper McLachlan, D.R., Dalton, A.J., Kruck, T.P., Bell, M.Y., Smith, W.L., Kalow, W., and Andrews, D.F., 1991, Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337: 1304–1308.

    Article  PubMed  CAS  Google Scholar 

  • Cuajungco, M.P., and Lees, G.J., 1996, Prevention of zinc neurotoxicity in vivo by n,n,n’,n’-tetrakis (2-pyridylmethyl) ethylene-diamine (tpen). Neuroreport 7: 1301–1304.

    PubMed  CAS  Google Scholar 

  • Cuajungco, M.P., and Lees, G.J., 1998, Diverse effects of metal chelating agents on the neuronal cytotoxicity of zinc in the hippocampus. Brain Res. 799: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Cuajungco, M.P., and Faget, K.Y., 2003, Zinc takes the center stage: Its paradoxical role in Alzheimer’s disease. Brain Res. Brain Res. Rev. 41: 44–56.

    Article  PubMed  CAS  Google Scholar 

  • Cuajungco, M.P., Faget, K.Y., Huang, X., Tanzi, R.E., and Bush, A.I., 2000a, Metal chelation as a potential therapy for Alzheimer’s disease. Ann. N. Y. Acad. Sci. 920: 292–304.

    Article  PubMed  CAS  Google Scholar 

  • Cuajungco, M.P., Goldstein, L.E., Nunomura, A., Smith, M.A., Lim, J.T., Atwood, C.S., Huang, X., Farrag, Y.W., Perry, G., and Bush, A.I., 2000b, Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J. Biol. Chem. 275:. 19439–19442.

    Article  PubMed  CAS  Google Scholar 

  • Curtain, C.C., Ali, F., Volitakis, I., Cherny, R.A., Norton, R.S., Beyreuther, K., Barrow, C.J., Masters, C.L., Bush, A.I., and Barnham, K.J., 2001, Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276: 20466–20473.

    Article  PubMed  CAS  Google Scholar 

  • Deibel, M.A., Ehmann, W.D., and Markesbery, W.R., 1996, Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: Possible relation to oxidative stress. J. Neurol. Sci. 143: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Drake, J., Link, C.D., and Butterfield, D.A., 2003, Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide (1-42) in a transgenic caenorhabditis elegans model. Neurobiol. Aging 24: 415–420.

    Article  PubMed  CAS  Google Scholar 

  • Dwork, A.J., Schon, E.A, and Herbert, J., 1988, Nonidentical distribution of transferrin and ferric iron in human brain. Neuroscience 27: 333–345.

    Article  PubMed  CAS  Google Scholar 

  • Emre, M., Geula, C., Ransil, B.J., and Mesulam, M.M., 1992, The acute neurotoxicity and effects upon cholinergic axons of intracerebrally injected beta-amyloid in the rat brain. Neurobiol. Aging 13: 553–559.

    Article  PubMed  CAS  Google Scholar 

  • Ertekin-Taner, N., Graff-Radford, N., Younkin, L.H., Eckman, C., Baker, M., Adamson, J., Ronald, J., Blangero, J., Hutton, M., and Younkin, S.G., 2000, Linkage of plasma abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science 290: 2303–2304.

    Article  PubMed  CAS  Google Scholar 

  • Frederickson, C.J., 1989, Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol 31: 145–238.

    Article  PubMed  CAS  Google Scholar 

  • Garzon-Rodriguez, W., Yatsimirsky, A.K., and Glabe, C.G., 1999, Binding of zn(ii), cu(ii), and fe(ii) ions to Alzheimer’s A beta peptide studied by fluorescence. Bioorg. Med. Chem. Lett. 9: 2243–2248.

    Article  PubMed  CAS  Google Scholar 

  • Glenner, G.G., and Wong, C.W., 1984, Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120: 885–890.

    Article  PubMed  CAS  Google Scholar 

  • Goedert, M., Sisodia, S.S., and Price, D.L., 1991, Neurofibrillary tangles and beta-amyloid deposits in Alzheimer’s disease. Curr. Opin. Neurobiol. 1: 441–447.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C., Martin, T., Cacho, J., Brenas, M.T., Arroyo, T., Garcia-Berrocal, B., Navajo, J.A., and Gonzalez-Buitrago, J.M., 1999, Serum zinc, copper, insulin and lipids in Alzheimer’s disease epsilon 4 apolipoprotein e allele carriers. Eur. J. Clin. Invest. 29: 637–642.

    Article  PubMed  CAS  Google Scholar 

  • Gray, D.N., Cherny, R., Masters, C.L., Tanzi, R.E., and Bush, A.I., 1998, Resolubilization of Alzheimer and app transgenic beta amyloid plaque by copper chelators. Soc. Neurosci. Abstr. 24: 722.

    Google Scholar 

  • Halliwell, B., 1992, Reactive oxygen species and the central nervous system. J. Nenrochem. 59: 1609–1623.

    Article  CAS  Google Scholar 

  • Halliwell, B., 2001, Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging 18: 685–716.

    Article  PubMed  CAS  Google Scholar 

  • Hershey, C.O., Hershey, L.A., Varnes, A., Vibhakar, S.D., Lavin, P., and Strain, W.H., 1983, Cerebrospinal fluid trace element content in dementia: Clinical, radiologic, and pathologic correlations. Neurology 33: 1350–1353.

    PubMed  CAS  Google Scholar 

  • Hesse, L., Beher, D., Masters, C.L., and Multhaup, G., 1994, The beta a4 amyloid precursor protein binding to copper. FEBS Lett. 349: 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Hirakura, Y., Yiu, W.W., Yamamoto, A., and Kagan, B.L., 2000, Amyloid peptide channels: Blockade by zinc and inhibition by congo red (amyloid channel block). Amyloid 7: 194–199.

    Article  PubMed  CAS  Google Scholar 

  • Hu, L., Wong, T.P., Cote, S.L., Bell, K.F., and Cuello, A.C., 2003, The impact of abeta-plaques on cortical cholinergic and non-cholinergic presynaptic boutons in Alzheimer’s disease-like transgenic mice. Neuroscience 121: 421–432.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Cuajungco, M.P., Atwood, C.S., Moir, R.D., Tanzi, R.E., and Bush, A.I., 2000, Alzheimer’s disease, beta-amyloid protein and zinc. J. Nutr. 130: 1488S–1492S.

    PubMed  CAS  Google Scholar 

  • Huang, X., Atwood, C.S., Moir, R.D., Hartshorn, M.A., Vonsattel, J.P., Tanzi, R.E., Bush, A.I., 1997, Zinc-induced Alzheimer’s abeta1-40 aggregation is mediated by conformational factors. J. Biol. Chem. 272: 26464–26470.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Atwood, C.S., Hartshorn, M.A., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Cuajungco, M.P., Gray, D.N., Lim, J., Moir, R.D., Tanzi, R.E., and Bush, A.I., 1999a, The a beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38: 7609–7616.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Cuajungco, M.P., Atwood, C.S., Hartshorn, M.A., Tyndall, J.D., Hanson, G.R., Stokes, K.C., Leopold, M., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Saunders, A.J., Lim, J., Moir, R.D., Glabe, C., Bowden, E.F., Masters, C.L., Fairlie, D.P., Tanzi, R.E., and Bush, A.I., 1999b, Cu(ii) potentiation of Alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem. 274: 37111–37116.

    Article  PubMed  CAS  Google Scholar 

  • Hyman, B.T., Van Hoesen, G.W., Kromer, L.J., and Damasio, A.R., 1986, Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann. Neurol. 20: 472–481.

    Article  PubMed  CAS  Google Scholar 

  • Kowall, N.W., McKee, A.C., Yankner, B.A., and Beal, M.F., 1992, In vivo neurotoxicity of beta-amyloid [beta(1-40)] and the beta(25–35) fragment. Neurobiol. Aging 13: 537–542.

    Article  PubMed  CAS  Google Scholar 

  • Kozin, S.A., Zirah, S., Rebuffat, S., Hoa, G.H., and Debey, P., 2001, Zinc binding to Alzheimer’s abeta(1–16) peptide results in stable soluble complex. Biochem. Biophys. Res. Commun. 285: 959–964.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.Y., Mook-Jung, I., and Koh, J.Y., 1999, Histochemically reactive zinc in plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. J. Neurosci. 19: RC10.

    PubMed  CAS  Google Scholar 

  • Lee, J.Y., Cole, T.B., Palmiter, R.D., Suh, S.W., and Koh, J.Y., 2002, Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant app transgenic mice. Proc. Natl. Acad. Sci. USA 99: 7705–7710.

    Article  PubMed  CAS  Google Scholar 

  • Lees, G.J., Cuajungco, M.P., and Leong, W., 1998, Effect of metal chelating agents on the direct and seizure-related neuronal death induced by zinc and kainic acid. Brain Res. 199: 108–117.

    Article  Google Scholar 

  • Lemere, C.A., Blusztajn, J.K., Yamaguchi, H., Wisniewski, T., Saido, T.C., and Selkoe, D.J. 1996, Sequence of deposition of heterogeneous amyloid beta-peptides and apo e in Down syndrome: Implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3: 16–32.

    Article  PubMed  CAS  Google Scholar 

  • Levy-Lahad, E., Tsuang, D., Bird, T.D., 1998, Recent advances in the genetics of Alzheimer’s disease. J. Ger. Psych. Neurol. 11: 42–54.

    CAS  Google Scholar 

  • Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D.M., Oshima, J., Pettingell, W.H., Yu, C.E., Jondro, P.D., Schmidt, S.D., Wang, K., et al., 1995, Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269: 973–977.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q.X., Evin, G., Small, D.H., Multhaup, G., Beyreuther, K., and Masters, C.L., 1995, Proteolytic processing of Alzheimer’s disease beta a4 amyloid precursor protein in human platelets. J. Biol. Chem. 270: 14140–14147.

    Article  PubMed  CAS  Google Scholar 

  • Licastro, F., Davis, L.J., Mocchegiani, E., and Fabris, N., 1996, Impaired peripheral zinc metabolism in patients with senile dementia of probable Alzheimer’s type as shown by low plasma concentrations of thymulin. Biol. Trace Elem. Res. 51: 55–62.

    PubMed  CAS  Google Scholar 

  • Liu, S.T., Howlett, G., and Barrow, C.J., 1999, Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the a beta peptide of Alzheimer’s disease. Biochemistry 38: 9373–9378.

    Article  PubMed  CAS  Google Scholar 

  • Loeffler, D.A., DeMaggio, A.J., Juneau, P.L., Brickman, C.M., Mashour, G.A., Finkelman, J.H., Pomara, N., and LeWitt, P.A., 1994, Ceruloplasmin is increased in cerebrospinal fluid in Alzheimer’s disease but not Parkinson’s disease. Alz. Dis. Assoc. Disord. 8: 190–197.

    Article  CAS  Google Scholar 

  • Lombardo, J.A., Stern, E.A., McLellan, M.E., Kajdasz, S.T., Hickey, G.A., Bacskai, B.J., and Hyman, B.T., 2003, Amyloid-beta antibody treatment leads to rapid normalization of plaque-induced neuritic alterations. J. Neurosci. 23: 10879–10883.

    PubMed  CAS  Google Scholar 

  • Lorenzo, A., and Yankner, B.A., 1994, Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc. Natl. Acad. Sci. USA 91: 12243–12247.

    Article  PubMed  CAS  Google Scholar 

  • Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L., and Markesbery, W.R., 1998, Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158: 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Luth, H.J., Apelt, J., Ihunwo, A.O., Arendt, T., and Schliebs, R., 2003, Degeneration of beta-amyloid-associated cholinergic structures in transgenic app sw mice. Brain Res. 977: 16–22.

    Article  PubMed  CAS  Google Scholar 

  • Maynard, C.J., Cappai, R., Volitakis, I., Cherny, R.A., White, A.R., Beyreuther, K., Masters, C.L., Bush, A.I., and Li, Q.X., 2002, Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J. Biol. Chem. 277: 44670–44676.

    Article  PubMed  CAS  Google Scholar 

  • Mecocci P, MacGarvey, U, Beal, MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751.

    Article  PubMed  CAS  Google Scholar 

  • Mecocci, P., Polidori, M.C., Cherubini, A., Ingegni, T., Mattioli, P., Catani, M., Rinaldi, P., Cecchetti, R., Stahl, W., Senin, U., and Beal, M.F., 2002, Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease. Arch. Neurol. 59: 794–798.

    Article  PubMed  Google Scholar 

  • Miura, T., Suzuki, K., Kohata, N., and Takeuchi, H., 2000, Metal binding modes of Azheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes. Biochemistry 39: 7024–7031.

    Article  PubMed  CAS  Google Scholar 

  • Moir, R.D., Atwood, C.S., Romano, D.M., Laurans, M.H., Huang, X., Bush, A.I., Smith, J.D., and Tanzi, R.E., 1999, Differential effects of apolipoprotein e isoforms on metal-induced aggregation of a beta using physiological concentrations. Biochemistry 38: 4595–4603.

    Article  PubMed  CAS  Google Scholar 

  • Molina, J.A., Jimenez-Jimenez, F.J., Aguilar, M.V., Meseguer, I., Mateos-Vega, C.J., Gonzalez-Munoz, M.J., de Bustos, F., Porta, J., Orti-Pareja, M., Zurdo, M., Barrios, E., and Martinez-Para, M.C., 1998, Cerebrospinal fluid levels of transition metals in patients with Alzheimer’s disease. J. Neural Transm. 105: 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Monji, A., Utsumi, H., Ueda, T., Imoto, T., Yoshida, I., Hashioka, S., Tashiro, K., and Tashiro, N., 2001, The relationship between the aggregational state of the amyloid-beta peptides and free radical generation by the peptides. J. Neurochem. 77: 1425–1432.

    Article  PubMed  CAS  Google Scholar 

  • Monji, A., Utsumi, H., Ueda, T., Imoto, T., Yoshida, I., Hashioka, S., Tashiro, K., and Tashiro, N., 2002, Amyloid-beta-protein (a beta) (25-35)-associated free radical generation is strongly influenced by the aggregational state of the peptides. Life Sci. 70: 833–841.

    Article  PubMed  CAS  Google Scholar 

  • Multhaup, G., 1994, Identification and regulation of the high affinity binding site of the Alzheimer’s disease amyloid protein precursor (app) to glycosaminoglycans. Biochimie 76:304–311.

    Article  PubMed  CAS  Google Scholar 

  • Multhaup, G., Mechler, H., and Masters, C.L., 1995, Characterization of the high affinity heparin binding site of the Alzheimer’s disease beta a4 amyloid precursor protein (app) and its enhancement by zinc(ii). J. Mol. Recognit. 8: 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Multhaup, G., Bush, A.I., Pollwein, P., and Masters, C.L., 1994, Interaction between the zinc (ii) and the heparin binding site of the Alzheimer’s disease beta a4 amyloid precursor protein (app). FEBS Lett. 355: 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Multhaup, G., Schlicksupp, A., Hesse, L., Beher, D., Ruppert, T., Masters, C.L., and Beyreuther, K., (1996, The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(ii) to copper(i). Science 271: 1406–1409.

    Article  PubMed  CAS  Google Scholar 

  • Multhaup, G., Ruppert, T., Schlicksupp, A., Hesse, L., Bill, E., Pipkorn, R., Masters, C.L., and Beyreuther, K., 1998, Copper-binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of hydrogen peroxide. Biochemistry 37: 7224–7230.

    Article  PubMed  CAS  Google Scholar 

  • Nitzan, Y.B., Sekler, I., Frederickson, C.J., Coulter, D.A., Balaji, R.V., Liang, S.L., Margulis, A., Hershfinkel, M., and Silverman, W.F., 2003, Clioquinol effects on tissue chelatable zinc in mice. J. Mol. Med. 81: 637–644.

    Article  PubMed  CAS  Google Scholar 

  • Perry, G., Taddeo, M.A., Petersen, R.B., Castellani, R.J., Harris, P.L., Siedlak, S.L., Cash, A.D., Liu, Q., Nunomura, A., Atwood, C.S., and Smith, M.A., 2003, Adventiously-bound redox active iron and copper are at the center of oxidative damage in alzheimer disease. Biometals 16: 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Pike, C.J., Walencewicz, A.J., Glabe, C.G., and Cotman, C.W., 1991a, Aggregation-related toxicity of synthetic beta-amyloid protein in hippocampal cultures. Eur. J. Pharmacol. 207: 367–368.

    Article  PubMed  CAS  Google Scholar 

  • Pike, C.J., Walencewicz, A.J., Glabe, C.G., and Cotman, C.W., 1991b, In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 563: 311–314.

    Article  PubMed  CAS  Google Scholar 

  • Regland, B., Lehmann, W., Abedini, I., Blennow, K., Jonsson, M., Karlsson, I., Sjogren, M., Wallin, A., Xilinas, M., and Gottfries, C.G., 2001, Treatment of Alzheimer’s disease with clioquinol. Dement. Geriatr. Cogn. Disord. 12: 408–414.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, C.W., Bush, A.I., Mackinnon, A., Macfarlane, S., Mastwyk, M., MacGregor, L., Kiers, L., Cherny, R., Li, Q.X., Tammer, A., Carrington, D., Mavros, C, Volitakis, I., Xilinas, M., Ames, D., Davis, S., Beyreuther, K., Tanzi, R.E., and Masters, C.L., 2003, Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting abeta amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial. Arch. Neurol. 60: 1685–1691.

    Article  PubMed  Google Scholar 

  • Roses, A.D., Saunders, A.M., Alberts, M.A., Strittmatter, W.J., Schmechel, D., Gorder, E., and Pericak-Vance, M.A., 1995, Apolipoprotein e e4 allele and risk of dementia. Jama 273: 374–375; author reply 375–376.

    Article  PubMed  CAS  Google Scholar 

  • Rottkamp, C.A., Raina, A.K., Zhu, X., Gaier, E., Bush, A.I., Atwood, C.S., Chevion, M., Perry, G., and Smith, M.A., 2001, Redox-active iron mediates amyloid-beta toxicity. Free Radic. Biol. Med. 30: 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz, F.H., Gonzalez, M., Bodini, M., Opazo, C., and Inestrosa, N.C., 1999, Cysteine 144 is a key residue in the copper reduction by the beta-amyloid precursor protein. J. Neurochem. 73: 1288–1292.

    Article  PubMed  CAS  Google Scholar 

  • Sahu, R.N., Pandey, R.S., Subhash, M.N., Arya, B.Y., Padmashree, T.S., and Srinivas, K.N., 1988, Csf zinc in Alzheimer’s type dementia. Biol Psychiatry 24:480–482.

    Article  PubMed  CAS  Google Scholar 

  • Samudralwar, D.L., Diprete, C.C., Ni, B.F., Ehmann, W.D., and Markesbery, W.R., 1995, Elemental imbalances in the olfactory pathway in Alzheimer’s disease. J. Neural. Sci. 130: 139–145.

    Article  CAS  Google Scholar 

  • Sano, M., Ernesto, C, Thomas, R.G., Klauber, M.R., Schafer, K., Grundman, M., Woodbury, P., Growdon, Cotman, C.W., Pfeiffer, E., Schneider, L.S., and Thal, L.J., 1997, A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s disease cooperative study. N. Engl. J. Med. 336: 1216–1222.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, A.J., Bertram, L., Mullin, K., Sampson, A.J., Latifzai, K., Basu, S., Jones, J., Kinney, D., MacKenzie-lngano, L., Yu, S., Albert, M.S., Moscarillo, T.J., Go, R.C., Bassett, S.S., Daly, M.J., Laird, N.M., Wang, X., Velicelebi, G., Wagner, S.L., Becker, D.K., Tanzi, R.E., and Blacker, D., 2003, Genetic association of Alzheimer’s disease with multiple polymorphisms in alpha-2-macroglobulin. Hum. Mol. Genet. 12: 2765–2776.

    Article  PubMed  CAS  Google Scholar 

  • Sayre, L.M., Perry, G., Harris, P.L., Liu, Y., Schubert, K.A., and Smith, M.A., 2000, In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: A central role for bound transition metals. J. Neurochem 74: 270–279.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, D., and Chevion, M., 1995, The role of iron in beta amyloid toxicity. Biochem. Biophys. Res. Commun. 216: 702–707.

    Article  PubMed  CAS  Google Scholar 

  • Simons, A., Ruppert, T., Schmidt, C., Schlicksupp, A., Pipkorn, R., Reed, J., Masters, C.L., White, A.R., Cappai, R., Beyreuther, K., Bayer, T.A., and Multhaup, G., 2002, Evidence for a copper-binding superfamily of the amyloid precursor protein. Biochemistry 41: 9310–9320.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.A., Harris, P.L., Sayre, L.M., and Perry, G., 1997, Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. USA 94: 9866–9868.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.A., Wehr, K., Harris, P.L., Siedlak, S.L., Connor, J.R., and Perry, G., 1998a, Abnormal localization of iron regulatory protein in Alzheimer’s disease. Brain Res. 788: 232–236.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.A., Hirai, K., Hsiao, K., Pappolla, M.A., Harris, P.L., Siedlak, S.L., Tabaton, M., and Perry, G., 1998b, Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem. 70: 2212–2215.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R., ed., 1983, Copper in the developing brain. Human Press, New Jersey.

    Google Scholar 

  • Squitti, R., Lupoi, D., Pasqualetti, P., Dal Forno, G., Vernieri, F., Chiovenda, P., Rossi, L., Cortesi, M., Cassetta, E., and Rossini, P.M., 2002, Elevation of serum copper levels in Alzheimer’s disease. Neurology 59: 1153–1161.

    PubMed  CAS  Google Scholar 

  • Suh, S.W., Jensen, K.B., Jensen, M.S., Silva, D.S., Kesslak, P.J., Danscher, G., and Frederickson, C.J., 2000, Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res. 852: 274–278.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K., Miura, T., and Takeuchi, H., 2001, Inhibitory effect of copper(ii) on zinc(ii)-induced aggregation of amyloid beta-peptide. Biochem. Biophys. Res. Commun. 285: 991–996.

    Article  PubMed  CAS  Google Scholar 

  • Tanzi, R.E., Kovacs, D.M., Kim, T.W., Moir, R.D., Guenette, S.Y., and Wasco, W., 1996, The gene defects responsible for familial Alzheimer’s disease. Neurobiol. Dis. 3: 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Tully, C.L., Snowdon, D.A., and Markesbery, W.R., 1995, Serum zinc, senile plaques, and neurofibrillary tangles: Findings from the nun study. Neuroreport 6: 2105–2108.

    Article  PubMed  CAS  Google Scholar 

  • Wasco, W., Bupp, K., Magendantz, M., Gusella, J.F., Tanzi, R.E., and Solomon, F., 1992, Identification of a mouse brain cdna that encodes a protein related to the Alzheimer disease-associated amyloid beta protein precursor. Proc. Natl. Acad. Sci. USA 89: 10758–10762.

    Article  PubMed  CAS  Google Scholar 

  • Wasco, W., Gurubhagavatula, S., Paradis, M.D., Romano, D.M., Sisodia, S.S., Hyman, B.T., Neve, R.L., and Tanzi, R.E., 1993, Isolation and characterization of aplp2 encoding a homologue of the Alzheimer’s associated amyloid beta protein precursor. Nature Genet. 5: 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Weldon, D.T., Rogers, S.D., Ghilardi, J.R., Finke, M.P., Cleary, J.P., O’Hare, E., Esler, W.P., Maggio, J.E., and Mantyh, P.W., 1998, Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat cns in vivo. J. Neurosci. 18: 2161–2173.

    PubMed  CAS  Google Scholar 

  • White, A.R., Multhaup, G., Maher, F., Bellingham, S., Camakaris, J., Zheng, H., Bush, A.I., Beyreuther, K., Masters, C.L., and Cappai, R., 1999, The Alzheimer’s disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. J. Neurosci. 19: 9170–9179.

    PubMed  CAS  Google Scholar 

  • Winblad, B., Hardy, J., Backman, L., and Nilsson, L.G., 1985, Memory function and brain biochemistry in normal aging and in senile dementia. Ann. N. Y. Acad. Sci. 444: 255–268.

    PubMed  CAS  Google Scholar 

  • Wolfe, M.S., 2003, The secretases of Alzheimer’s disease. Curr. Top. Dev. Biol. 54: 233–261.

    PubMed  CAS  Google Scholar 

  • Yang, D.S., McLaurin, J., Qin, K., Westaway, D., and Fraser, P.E., 2000, Examining the zinc binding site of the amyloid-beta peptide. Eur. J. Biochem. 267: 6692–6698.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L.B., Lindholm, K., Yan, R., Citron, M., Xia, W., Yang, X.L., Beach, T., Sue, L., Wong, Price, D., Li, R., and Shen, Y., 2003, Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nature Med. 9: 3–4.

    Article  PubMed  CAS  Google Scholar 

  • Yankner, B.A., Dawes, L.R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M.L., and Neve, R.L., 1989, Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245: 417–420.

    Article  PubMed  CAS  Google Scholar 

  • Yoshiike, Y., Tanemura, K., Murayama, O., Akagi, T., Murayama, M., Sato, S., Sun, X., Tanaka, N., and Takashima, A., 2001, New insights on how metals disrupt amyloid beta-aggregation and their effects on amyloid-beta cytotoxicity. J. Biol. Chem. 276: 32293–32299.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Cuajungco, M.P., Frederickson, C.J., Bush, A.I. (2005). Amyloid-β Metal Interaction and Metal Chelation. In: Harris, J.R., Fahrenholz, F. (eds) Alzheimer’s Disease. Subcellular Biochemistry, vol 38. Springer, Boston, MA . https://doi.org/10.1007/0-387-23226-5_12

Download citation

Publish with us

Policies and ethics