Amyloid-β Metal Interaction and Metal Chelation

  • Math P. Cuajungco
  • Christopher J. Frederickson
  • Ashley I. Bush
Part of the Subcellular Biochemistry book series (SCBI, volume 38)


Alzheimer’s disease (AD) is associated with the abnormal aggregation of amyloid-beta (Aβ) protein. Aβ and its precursor protein (APP) interact with metal ions such as zinc, copper and iron. Evidence shows that these metals play a role in the precipitation and cytotoxicity of Aβ. Despite recent advances in AD research, there is a lack of therapeutic agents to hinder the apparent aggregation and toxicity of Aβ. Recent studies show that drugs with metal chelating properties could produce a significant reversal of amyloid-β plaque deposition in vitro and in vivo. Here we discuss the interaction of Aβ with metals, metal dyshomeostasis in the CNS of patients with AD, and the potential therapeutic effects of metal chelators.

Key words

Metal chelators Zinc Copper Iron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arendt, T., Bigl, V., Tennstedt, A., and Arendt, A., 1984, Correlation between cortical plaque count and neuronal loss in the nucleus basalis in Alzheimer’s disease. Neurosci. Lett. 48: 81–85.PubMedGoogle Scholar
  2. Armstrong, C., Leong, W., and Lees, G.J., 2001, Comparative effects of metal chelating agents on the neuronal cytotoxicity induced by copper (cu+2), iron (fe+3) and zinc in the hippocampus. Brain Res. 892: 51–62.PubMedCrossRefGoogle Scholar
  3. Atwood, C.S., Scarpa, R.C., Huang, X., Moir, R.D., Jones, W.D., Fairlie, D.P., Tanzi, R.E., and Bush, A.I., 2000a, Characterization of copper interactions with Alzheimer amyloid beta peptides: Identification of an attomolar-affmity copper binding site on amyloid beta l-42. J. Neurochem. 75: 1219–1233.PubMedCrossRefGoogle Scholar
  4. Atwood, C.S., Moir, R.D., Huang, X., Scarpa, R.C., Bacarra, N.M, Romano, D.M., Hartshorn, M.A., Tanzi, R.E., and Bush, A.I., 1998, Dramatic aggregation of Alzheimer abeta by cu(ii) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273: 12817–12826.PubMedCrossRefGoogle Scholar
  5. Atwood, C.S., Huang, X., Khatri, A., Scarpa, R.C., Kim, Y.S., Moir, R.D., Tanzi, R.E., Roher, A.E., and Bush, A.I., 2000b, Copper catalyzed oxidation of Alzheimer abeta. Cell. Mol. Biol. 46: 777–783.PubMedGoogle Scholar
  6. Basun, H., Forssell, L, G, Wetterberg, L, and Winblad, B., 1991, Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J. Neural Transm. Park. Dis. Dement. Sect. 3: 231–258.PubMedGoogle Scholar
  7. Behl, C., Davis, J.B., Lesley, R., and Schubert, D., 1994, Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817–827.PubMedCrossRefGoogle Scholar
  8. Bertram, L., Blacker, D., Mullin, K., Keeney, D., Jones, J., Basu, S., Yhu, S., McInnis, M.G., Go, R.C., Vekrellis, K., Selkoe, D.J., Saunders, A.J., and Tanzi, R.E., 2000, Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q. Science 290: 2302–2303.PubMedCrossRefGoogle Scholar
  9. Blacker, D., Wilcox, M.A., Laird, N.M., Rodes, L., Horvath, S.M., Go, R.C., Perry, R., Watson, B., Jr., Bassett, S.S., McIlnnis, M.G., Albert, M.S., Hyman, B.T., and Tanzi, R.E., 1998, Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nature Genet. 19: 357–360.PubMedCrossRefGoogle Scholar
  10. Borchardt, T., Camakaris, J., Cappai, R., Masters, C.L., Beyreuther, K., and Multhaup, G., 1999, Copper inhibits beta-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion. Biochem. J. 344: 461–467.PubMedCrossRefGoogle Scholar
  11. Borchardt, T., Schmidt, C., Camarkis, J., Cappai, R., Masters, C.L., Beyreuther, K., and Multhaup, G., 2000, Differential effects of zinc on amyloid precursor protein (app) processing in copper-resistant variants of cultured Chinese hamster ovary cells. Cell. Mol. Biol. 46: 785–795.PubMedGoogle Scholar
  12. Brown, A.M., Tummolo, D.M., Rhodes, K.J., Hofmann, J.R., Jacobsen, J.S., and Sonnenberg-Reines, J., 1997, Selective aggregation of endogenous beta-amyloid peptide and soluble amyloid precursor protein in cerebrospinal fluid by zinc. J. Neurochem. 69: 1204–1212.PubMedCrossRefGoogle Scholar
  13. Bruce, A.J., Malfroy, B., Baudry, M., 1996, Beta-amyloid toxicity in organotypic hippocampal cultures: Protection by euk-8, a synthetic catalytic free radical scavenger. Proc. Natl. Acad. Sci. USA. 93: 2312–2316.PubMedCrossRefGoogle Scholar
  14. Bush, A.I., Pettingell, W.H., Jr., de Paradis, M., Tanzi, R.E., and Wasco, W., 1994a, The amyloid beta-protein precursor and its mammalian homologues. Evidence for a zinc-modulated heparin-binding superfamily. J. Biol. Chem. 269: 26618–26621.PubMedGoogle Scholar
  15. Bush, A.I., Multhaup, G., Moir, R.D., Williamson, T.G., Small, D.H., Rumble, B., Pollwein, P., Beyreuther, K., and Masters, C.L, 1993, A novel zinc(ii) binding site modulates the function of the beta a4 amyloid protein precursor of alzheimer’s disease. J. Biol. Chem. 268: 16109–16112.PubMedGoogle Scholar
  16. Bush AI, Pettingell, WH, Multhaup, G, d Paradis, M, Vonsattel, JP, Gusella, JF, Beyreuther, K, Masters, CL, Tanzi, RE (1994b) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265:1464–1467.PubMedCrossRefGoogle Scholar
  17. Butterfield, D.A., and Lauderback, C.M., 2002, Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic. Biol. Med. 32: 1050–1060.PubMedCrossRefGoogle Scholar
  18. Butterfield, D.A., Yatin, S.M., and Link, C.D., 1999a, In vitro and in vivo protein oxidation induced by Alzheimer’s disease amyloid beta-peptide (1-42). Ann. N.Y. Acad. Sci. 893: 265–268.PubMedCrossRefGoogle Scholar
  19. Butterfield, D.A., Koppal, T., Subramaniam, R., and Yatin, S., 1999b, Vitamin e as an antioxidant/free radical scavenger against amyloid beta-peptide-induced oxidative stress in neocortical synaptosomal membranes and hippocampal neurons in culture: Insights into Alzheimer’s disease. Rev. Neurosci. 10: 141–149.PubMedGoogle Scholar
  20. Butterfield, D.A., Castegna, A., Lauderback, CM., and Drake, J., 2002a, Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobioi Aging 23: 655–664.CrossRefGoogle Scholar
  21. Butterfield, D.A., Griffin, S., Munch, G., and Pasinetti, G.M., 2002b, Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which alzheimer’s disease brain exists. J. Alzheimer’s Dis. 4: 193–201.Google Scholar
  22. Cherny, R.A., Legg, J.T., McLean, C.A., Fairlie, D.P, Huang, X., Atwood, C.S., Beyreuther, K, Tanzi, R.E., Masters, C.L., and Bush, A.I., 1999, Aqueous dissolution of Alzheimer’s disease a.beta amyloid deposits by biometal depletion. J. Biol. Chem. 274: 23223–23228.PubMedCrossRefGoogle Scholar
  23. Cherny, R.A., Atwood, C.S., Xilinas, M.E., Gray, D.N, Jones, W.D., McLean, C.A., Barnham, K.J., Volitakis, I., Fraser, F.W., Kim, Y., Huang, X., Goldstein, L.E., Moir, R.D., Lim, J.T., Beyreuther, K., Zheng, H., Tanzi, R.E., Masters, C.L., and Bush, A.I., 2001, Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in alzheimer’s disease transgenic mice. Neuron 30: 665–676.PubMedCrossRefGoogle Scholar
  24. Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A, Y., Seubert, P., Vigo-Pelfrey, C., Lieberburg, I., and Selkoe, D.J., 1992, Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360: 672–674.PubMedCrossRefGoogle Scholar
  25. Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A., Kholodenko, D., Motter, R., Sherrington, R., Perry, B., Yao, H, Strome, R, Lieberburg, I, Rommens, J, Kim, S, Schenk, D, Fraser, P, St George Hyslop, P., and Selkoe, D.J., 1997, Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nature Med. 3: 67–72.PubMedCrossRefGoogle Scholar
  26. Connor, J.R., Menzies, S.L., St Martin, S.M., and Mufson, E.J., 1992, A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J. Neurosci. Res. 31: 75–83.PubMedCrossRefGoogle Scholar
  27. Constantinidis, J., 1991a, The hypothesis of zinc deficiency in the pathogenesis of neurofibrillary tangles. Med. Hypoth. 35: 319–323.CrossRefGoogle Scholar
  28. Constantinidis, J., 1991b, Hypothesis regarding amyloid and zinc in the pathogenesis of Alzheimer disease: Potential for preventive intervention. Alzheimer Dis. Assoc. Disord. 5: 31–35.PubMedCrossRefGoogle Scholar
  29. Cornett, C.R., Markesbery, W.R., and Ehmann, W.D., 1998a, Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicol. 19: 339–345.Google Scholar
  30. Cornett, C.R., Ehmann, W.D., Wekstein, D.R, and Markesbery, W.R, 1998b, Trace elements in Alzheimer’s disease pituitary glands. Biol. Trace Elem. Res. 62: 107–114.PubMedGoogle Scholar
  31. Corrigan, F.M., Reynolds, G.P., Ward, N.I., 1993, Hippocampal tin, aluminum and zinc in Alzheimer’s disease. Biometals 6: 149–154.PubMedCrossRefGoogle Scholar
  32. Crapper McLachlan, D.R., Dalton, A.J., Kruck, T.P., Bell, M.Y., Smith, W.L., Kalow, W., and Andrews, D.F., 1991, Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337: 1304–1308.PubMedCrossRefGoogle Scholar
  33. Cuajungco, M.P., and Lees, G.J., 1996, Prevention of zinc neurotoxicity in vivo by n,n,n’,n’-tetrakis (2-pyridylmethyl) ethylene-diamine (tpen). Neuroreport 7: 1301–1304.PubMedGoogle Scholar
  34. Cuajungco, M.P., and Lees, G.J., 1998, Diverse effects of metal chelating agents on the neuronal cytotoxicity of zinc in the hippocampus. Brain Res. 799: 97–107.PubMedCrossRefGoogle Scholar
  35. Cuajungco, M.P., and Faget, K.Y., 2003, Zinc takes the center stage: Its paradoxical role in Alzheimer’s disease. Brain Res. Brain Res. Rev. 41: 44–56.PubMedCrossRefGoogle Scholar
  36. Cuajungco, M.P., Faget, K.Y., Huang, X., Tanzi, R.E., and Bush, A.I., 2000a, Metal chelation as a potential therapy for Alzheimer’s disease. Ann. N. Y. Acad. Sci. 920: 292–304.PubMedCrossRefGoogle Scholar
  37. Cuajungco, M.P., Goldstein, L.E., Nunomura, A., Smith, M.A., Lim, J.T., Atwood, C.S., Huang, X., Farrag, Y.W., Perry, G., and Bush, A.I., 2000b, Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J. Biol. Chem. 275:. 19439–19442.PubMedCrossRefGoogle Scholar
  38. Curtain, C.C., Ali, F., Volitakis, I., Cherny, R.A., Norton, R.S., Beyreuther, K., Barrow, C.J., Masters, C.L., Bush, A.I., and Barnham, K.J., 2001, Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276: 20466–20473.PubMedCrossRefGoogle Scholar
  39. Deibel, M.A., Ehmann, W.D., and Markesbery, W.R., 1996, Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: Possible relation to oxidative stress. J. Neurol. Sci. 143: 137–142.PubMedCrossRefGoogle Scholar
  40. Drake, J., Link, C.D., and Butterfield, D.A., 2003, Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide (1-42) in a transgenic caenorhabditis elegans model. Neurobiol. Aging 24: 415–420.PubMedCrossRefGoogle Scholar
  41. Dwork, A.J., Schon, E.A, and Herbert, J., 1988, Nonidentical distribution of transferrin and ferric iron in human brain. Neuroscience 27: 333–345.PubMedCrossRefGoogle Scholar
  42. Emre, M., Geula, C., Ransil, B.J., and Mesulam, M.M., 1992, The acute neurotoxicity and effects upon cholinergic axons of intracerebrally injected beta-amyloid in the rat brain. Neurobiol. Aging 13: 553–559.PubMedCrossRefGoogle Scholar
  43. Ertekin-Taner, N., Graff-Radford, N., Younkin, L.H., Eckman, C., Baker, M., Adamson, J., Ronald, J., Blangero, J., Hutton, M., and Younkin, S.G., 2000, Linkage of plasma abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science 290: 2303–2304.PubMedCrossRefGoogle Scholar
  44. Frederickson, C.J., 1989, Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol 31: 145–238.PubMedCrossRefGoogle Scholar
  45. Garzon-Rodriguez, W., Yatsimirsky, A.K., and Glabe, C.G., 1999, Binding of zn(ii), cu(ii), and fe(ii) ions to Alzheimer’s A beta peptide studied by fluorescence. Bioorg. Med. Chem. Lett. 9: 2243–2248.PubMedCrossRefGoogle Scholar
  46. Glenner, G.G., and Wong, C.W., 1984, Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120: 885–890.PubMedCrossRefGoogle Scholar
  47. Goedert, M., Sisodia, S.S., and Price, D.L., 1991, Neurofibrillary tangles and beta-amyloid deposits in Alzheimer’s disease. Curr. Opin. Neurobiol. 1: 441–447.PubMedCrossRefGoogle Scholar
  48. Gonzalez, C., Martin, T., Cacho, J., Brenas, M.T., Arroyo, T., Garcia-Berrocal, B., Navajo, J.A., and Gonzalez-Buitrago, J.M., 1999, Serum zinc, copper, insulin and lipids in Alzheimer’s disease epsilon 4 apolipoprotein e allele carriers. Eur. J. Clin. Invest. 29: 637–642.PubMedCrossRefGoogle Scholar
  49. Gray, D.N., Cherny, R., Masters, C.L., Tanzi, R.E., and Bush, A.I., 1998, Resolubilization of Alzheimer and app transgenic beta amyloid plaque by copper chelators. Soc. Neurosci. Abstr. 24: 722.Google Scholar
  50. Halliwell, B., 1992, Reactive oxygen species and the central nervous system. J. Nenrochem. 59: 1609–1623.CrossRefGoogle Scholar
  51. Halliwell, B., 2001, Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging 18: 685–716.PubMedCrossRefGoogle Scholar
  52. Hershey, C.O., Hershey, L.A., Varnes, A., Vibhakar, S.D., Lavin, P., and Strain, W.H., 1983, Cerebrospinal fluid trace element content in dementia: Clinical, radiologic, and pathologic correlations. Neurology 33: 1350–1353.PubMedGoogle Scholar
  53. Hesse, L., Beher, D., Masters, C.L., and Multhaup, G., 1994, The beta a4 amyloid precursor protein binding to copper. FEBS Lett. 349: 109–116.PubMedCrossRefGoogle Scholar
  54. Hirakura, Y., Yiu, W.W., Yamamoto, A., and Kagan, B.L., 2000, Amyloid peptide channels: Blockade by zinc and inhibition by congo red (amyloid channel block). Amyloid 7: 194–199.PubMedCrossRefGoogle Scholar
  55. Hu, L., Wong, T.P., Cote, S.L., Bell, K.F., and Cuello, A.C., 2003, The impact of abeta-plaques on cortical cholinergic and non-cholinergic presynaptic boutons in Alzheimer’s disease-like transgenic mice. Neuroscience 121: 421–432.PubMedCrossRefGoogle Scholar
  56. Huang, X., Cuajungco, M.P., Atwood, C.S., Moir, R.D., Tanzi, R.E., and Bush, A.I., 2000, Alzheimer’s disease, beta-amyloid protein and zinc. J. Nutr. 130: 1488S–1492S.PubMedGoogle Scholar
  57. Huang, X., Atwood, C.S., Moir, R.D., Hartshorn, M.A., Vonsattel, J.P., Tanzi, R.E., Bush, A.I., 1997, Zinc-induced Alzheimer’s abeta1-40 aggregation is mediated by conformational factors. J. Biol. Chem. 272: 26464–26470.PubMedCrossRefGoogle Scholar
  58. Huang, X., Atwood, C.S., Hartshorn, M.A., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Cuajungco, M.P., Gray, D.N., Lim, J., Moir, R.D., Tanzi, R.E., and Bush, A.I., 1999a, The a beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38: 7609–7616.PubMedCrossRefGoogle Scholar
  59. Huang, X., Cuajungco, M.P., Atwood, C.S., Hartshorn, M.A., Tyndall, J.D., Hanson, G.R., Stokes, K.C., Leopold, M., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Saunders, A.J., Lim, J., Moir, R.D., Glabe, C., Bowden, E.F., Masters, C.L., Fairlie, D.P., Tanzi, R.E., and Bush, A.I., 1999b, Cu(ii) potentiation of Alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem. 274: 37111–37116.PubMedCrossRefGoogle Scholar
  60. Hyman, B.T., Van Hoesen, G.W., Kromer, L.J., and Damasio, A.R., 1986, Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann. Neurol. 20: 472–481.PubMedCrossRefGoogle Scholar
  61. Kowall, N.W., McKee, A.C., Yankner, B.A., and Beal, M.F., 1992, In vivo neurotoxicity of beta-amyloid [beta(1-40)] and the beta(25–35) fragment. Neurobiol. Aging 13: 537–542.PubMedCrossRefGoogle Scholar
  62. Kozin, S.A., Zirah, S., Rebuffat, S., Hoa, G.H., and Debey, P., 2001, Zinc binding to Alzheimer’s abeta(1–16) peptide results in stable soluble complex. Biochem. Biophys. Res. Commun. 285: 959–964.PubMedCrossRefGoogle Scholar
  63. Lee, J.Y., Mook-Jung, I., and Koh, J.Y., 1999, Histochemically reactive zinc in plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. J. Neurosci. 19: RC10.PubMedGoogle Scholar
  64. Lee, J.Y., Cole, T.B., Palmiter, R.D., Suh, S.W., and Koh, J.Y., 2002, Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant app transgenic mice. Proc. Natl. Acad. Sci. USA 99: 7705–7710.PubMedCrossRefGoogle Scholar
  65. Lees, G.J., Cuajungco, M.P., and Leong, W., 1998, Effect of metal chelating agents on the direct and seizure-related neuronal death induced by zinc and kainic acid. Brain Res. 199: 108–117.CrossRefGoogle Scholar
  66. Lemere, C.A., Blusztajn, J.K., Yamaguchi, H., Wisniewski, T., Saido, T.C., and Selkoe, D.J. 1996, Sequence of deposition of heterogeneous amyloid beta-peptides and apo e in Down syndrome: Implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3: 16–32.PubMedCrossRefGoogle Scholar
  67. Levy-Lahad, E., Tsuang, D., Bird, T.D., 1998, Recent advances in the genetics of Alzheimer’s disease. J. Ger. Psych. Neurol. 11: 42–54.Google Scholar
  68. Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D.M., Oshima, J., Pettingell, W.H., Yu, C.E., Jondro, P.D., Schmidt, S.D., Wang, K., et al., 1995, Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269: 973–977.PubMedCrossRefGoogle Scholar
  69. Li, Q.X., Evin, G., Small, D.H., Multhaup, G., Beyreuther, K., and Masters, C.L., 1995, Proteolytic processing of Alzheimer’s disease beta a4 amyloid precursor protein in human platelets. J. Biol. Chem. 270: 14140–14147.PubMedCrossRefGoogle Scholar
  70. Licastro, F., Davis, L.J., Mocchegiani, E., and Fabris, N., 1996, Impaired peripheral zinc metabolism in patients with senile dementia of probable Alzheimer’s type as shown by low plasma concentrations of thymulin. Biol. Trace Elem. Res. 51: 55–62.PubMedGoogle Scholar
  71. Liu, S.T., Howlett, G., and Barrow, C.J., 1999, Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the a beta peptide of Alzheimer’s disease. Biochemistry 38: 9373–9378.PubMedCrossRefGoogle Scholar
  72. Loeffler, D.A., DeMaggio, A.J., Juneau, P.L., Brickman, C.M., Mashour, G.A., Finkelman, J.H., Pomara, N., and LeWitt, P.A., 1994, Ceruloplasmin is increased in cerebrospinal fluid in Alzheimer’s disease but not Parkinson’s disease. Alz. Dis. Assoc. Disord. 8: 190–197.CrossRefGoogle Scholar
  73. Lombardo, J.A., Stern, E.A., McLellan, M.E., Kajdasz, S.T., Hickey, G.A., Bacskai, B.J., and Hyman, B.T., 2003, Amyloid-beta antibody treatment leads to rapid normalization of plaque-induced neuritic alterations. J. Neurosci. 23: 10879–10883.PubMedGoogle Scholar
  74. Lorenzo, A., and Yankner, B.A., 1994, Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc. Natl. Acad. Sci. USA 91: 12243–12247.PubMedCrossRefGoogle Scholar
  75. Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L., and Markesbery, W.R., 1998, Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158: 47–52.PubMedCrossRefGoogle Scholar
  76. Luth, H.J., Apelt, J., Ihunwo, A.O., Arendt, T., and Schliebs, R., 2003, Degeneration of beta-amyloid-associated cholinergic structures in transgenic app sw mice. Brain Res. 977: 16–22.PubMedCrossRefGoogle Scholar
  77. Maynard, C.J., Cappai, R., Volitakis, I., Cherny, R.A., White, A.R., Beyreuther, K., Masters, C.L., Bush, A.I., and Li, Q.X., 2002, Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J. Biol. Chem. 277: 44670–44676.PubMedCrossRefGoogle Scholar
  78. Mecocci P, MacGarvey, U, Beal, MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751.PubMedCrossRefGoogle Scholar
  79. Mecocci, P., Polidori, M.C., Cherubini, A., Ingegni, T., Mattioli, P., Catani, M., Rinaldi, P., Cecchetti, R., Stahl, W., Senin, U., and Beal, M.F., 2002, Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease. Arch. Neurol. 59: 794–798.PubMedCrossRefGoogle Scholar
  80. Miura, T., Suzuki, K., Kohata, N., and Takeuchi, H., 2000, Metal binding modes of Azheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes. Biochemistry 39: 7024–7031.PubMedCrossRefGoogle Scholar
  81. Moir, R.D., Atwood, C.S., Romano, D.M., Laurans, M.H., Huang, X., Bush, A.I., Smith, J.D., and Tanzi, R.E., 1999, Differential effects of apolipoprotein e isoforms on metal-induced aggregation of a beta using physiological concentrations. Biochemistry 38: 4595–4603.PubMedCrossRefGoogle Scholar
  82. Molina, J.A., Jimenez-Jimenez, F.J., Aguilar, M.V., Meseguer, I., Mateos-Vega, C.J., Gonzalez-Munoz, M.J., de Bustos, F., Porta, J., Orti-Pareja, M., Zurdo, M., Barrios, E., and Martinez-Para, M.C., 1998, Cerebrospinal fluid levels of transition metals in patients with Alzheimer’s disease. J. Neural Transm. 105: 479–488.PubMedCrossRefGoogle Scholar
  83. Monji, A., Utsumi, H., Ueda, T., Imoto, T., Yoshida, I., Hashioka, S., Tashiro, K., and Tashiro, N., 2001, The relationship between the aggregational state of the amyloid-beta peptides and free radical generation by the peptides. J. Neurochem. 77: 1425–1432.PubMedCrossRefGoogle Scholar
  84. Monji, A., Utsumi, H., Ueda, T., Imoto, T., Yoshida, I., Hashioka, S., Tashiro, K., and Tashiro, N., 2002, Amyloid-beta-protein (a beta) (25-35)-associated free radical generation is strongly influenced by the aggregational state of the peptides. Life Sci. 70: 833–841.PubMedCrossRefGoogle Scholar
  85. Multhaup, G., 1994, Identification and regulation of the high affinity binding site of the Alzheimer’s disease amyloid protein precursor (app) to glycosaminoglycans. Biochimie 76:304–311.PubMedCrossRefGoogle Scholar
  86. Multhaup, G., Mechler, H., and Masters, C.L., 1995, Characterization of the high affinity heparin binding site of the Alzheimer’s disease beta a4 amyloid precursor protein (app) and its enhancement by zinc(ii). J. Mol. Recognit. 8: 247–257.PubMedCrossRefGoogle Scholar
  87. Multhaup, G., Bush, A.I., Pollwein, P., and Masters, C.L., 1994, Interaction between the zinc (ii) and the heparin binding site of the Alzheimer’s disease beta a4 amyloid precursor protein (app). FEBS Lett. 355: 151–154.PubMedCrossRefGoogle Scholar
  88. Multhaup, G., Schlicksupp, A., Hesse, L., Beher, D., Ruppert, T., Masters, C.L., and Beyreuther, K., (1996, The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(ii) to copper(i). Science 271: 1406–1409.PubMedCrossRefGoogle Scholar
  89. Multhaup, G., Ruppert, T., Schlicksupp, A., Hesse, L., Bill, E., Pipkorn, R., Masters, C.L., and Beyreuther, K., 1998, Copper-binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of hydrogen peroxide. Biochemistry 37: 7224–7230.PubMedCrossRefGoogle Scholar
  90. Nitzan, Y.B., Sekler, I., Frederickson, C.J., Coulter, D.A., Balaji, R.V., Liang, S.L., Margulis, A., Hershfinkel, M., and Silverman, W.F., 2003, Clioquinol effects on tissue chelatable zinc in mice. J. Mol. Med. 81: 637–644.PubMedCrossRefGoogle Scholar
  91. Perry, G., Taddeo, M.A., Petersen, R.B., Castellani, R.J., Harris, P.L., Siedlak, S.L., Cash, A.D., Liu, Q., Nunomura, A., Atwood, C.S., and Smith, M.A., 2003, Adventiously-bound redox active iron and copper are at the center of oxidative damage in alzheimer disease. Biometals 16: 77–81.PubMedCrossRefGoogle Scholar
  92. Pike, C.J., Walencewicz, A.J., Glabe, C.G., and Cotman, C.W., 1991a, Aggregation-related toxicity of synthetic beta-amyloid protein in hippocampal cultures. Eur. J. Pharmacol. 207: 367–368.PubMedCrossRefGoogle Scholar
  93. Pike, C.J., Walencewicz, A.J., Glabe, C.G., and Cotman, C.W., 1991b, In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 563: 311–314.PubMedCrossRefGoogle Scholar
  94. Regland, B., Lehmann, W., Abedini, I., Blennow, K., Jonsson, M., Karlsson, I., Sjogren, M., Wallin, A., Xilinas, M., and Gottfries, C.G., 2001, Treatment of Alzheimer’s disease with clioquinol. Dement. Geriatr. Cogn. Disord. 12: 408–414.PubMedCrossRefGoogle Scholar
  95. Ritchie, C.W., Bush, A.I., Mackinnon, A., Macfarlane, S., Mastwyk, M., MacGregor, L., Kiers, L., Cherny, R., Li, Q.X., Tammer, A., Carrington, D., Mavros, C, Volitakis, I., Xilinas, M., Ames, D., Davis, S., Beyreuther, K., Tanzi, R.E., and Masters, C.L., 2003, Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting abeta amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial. Arch. Neurol. 60: 1685–1691.PubMedCrossRefGoogle Scholar
  96. Roses, A.D., Saunders, A.M., Alberts, M.A., Strittmatter, W.J., Schmechel, D., Gorder, E., and Pericak-Vance, M.A., 1995, Apolipoprotein e e4 allele and risk of dementia. Jama 273: 374–375; author reply 375–376.PubMedCrossRefGoogle Scholar
  97. Rottkamp, C.A., Raina, A.K., Zhu, X., Gaier, E., Bush, A.I., Atwood, C.S., Chevion, M., Perry, G., and Smith, M.A., 2001, Redox-active iron mediates amyloid-beta toxicity. Free Radic. Biol. Med. 30: 447–450.PubMedCrossRefGoogle Scholar
  98. Ruiz, F.H., Gonzalez, M., Bodini, M., Opazo, C., and Inestrosa, N.C., 1999, Cysteine 144 is a key residue in the copper reduction by the beta-amyloid precursor protein. J. Neurochem. 73: 1288–1292.PubMedCrossRefGoogle Scholar
  99. Sahu, R.N., Pandey, R.S., Subhash, M.N., Arya, B.Y., Padmashree, T.S., and Srinivas, K.N., 1988, Csf zinc in Alzheimer’s type dementia. Biol Psychiatry 24:480–482.PubMedCrossRefGoogle Scholar
  100. Samudralwar, D.L., Diprete, C.C., Ni, B.F., Ehmann, W.D., and Markesbery, W.R., 1995, Elemental imbalances in the olfactory pathway in Alzheimer’s disease. J. Neural. Sci. 130: 139–145.CrossRefGoogle Scholar
  101. Sano, M., Ernesto, C, Thomas, R.G., Klauber, M.R., Schafer, K., Grundman, M., Woodbury, P., Growdon, Cotman, C.W., Pfeiffer, E., Schneider, L.S., and Thal, L.J., 1997, A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s disease cooperative study. N. Engl. J. Med. 336: 1216–1222.PubMedCrossRefGoogle Scholar
  102. Saunders, A.J., Bertram, L., Mullin, K., Sampson, A.J., Latifzai, K., Basu, S., Jones, J., Kinney, D., MacKenzie-lngano, L., Yu, S., Albert, M.S., Moscarillo, T.J., Go, R.C., Bassett, S.S., Daly, M.J., Laird, N.M., Wang, X., Velicelebi, G., Wagner, S.L., Becker, D.K., Tanzi, R.E., and Blacker, D., 2003, Genetic association of Alzheimer’s disease with multiple polymorphisms in alpha-2-macroglobulin. Hum. Mol. Genet. 12: 2765–2776.PubMedCrossRefGoogle Scholar
  103. Sayre, L.M., Perry, G., Harris, P.L., Liu, Y., Schubert, K.A., and Smith, M.A., 2000, In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: A central role for bound transition metals. J. Neurochem 74: 270–279.PubMedCrossRefGoogle Scholar
  104. Schubert, D., and Chevion, M., 1995, The role of iron in beta amyloid toxicity. Biochem. Biophys. Res. Commun. 216: 702–707.PubMedCrossRefGoogle Scholar
  105. Simons, A., Ruppert, T., Schmidt, C., Schlicksupp, A., Pipkorn, R., Reed, J., Masters, C.L., White, A.R., Cappai, R., Beyreuther, K., Bayer, T.A., and Multhaup, G., 2002, Evidence for a copper-binding superfamily of the amyloid precursor protein. Biochemistry 41: 9310–9320.PubMedCrossRefGoogle Scholar
  106. Smith, M.A., Harris, P.L., Sayre, L.M., and Perry, G., 1997, Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. USA 94: 9866–9868.PubMedCrossRefGoogle Scholar
  107. Smith, M.A., Wehr, K., Harris, P.L., Siedlak, S.L., Connor, J.R., and Perry, G., 1998a, Abnormal localization of iron regulatory protein in Alzheimer’s disease. Brain Res. 788: 232–236.PubMedCrossRefGoogle Scholar
  108. Smith, M.A., Hirai, K., Hsiao, K., Pappolla, M.A., Harris, P.L., Siedlak, S.L., Tabaton, M., and Perry, G., 1998b, Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem. 70: 2212–2215.PubMedCrossRefGoogle Scholar
  109. Smith, R., ed., 1983, Copper in the developing brain. Human Press, New Jersey.Google Scholar
  110. Squitti, R., Lupoi, D., Pasqualetti, P., Dal Forno, G., Vernieri, F., Chiovenda, P., Rossi, L., Cortesi, M., Cassetta, E., and Rossini, P.M., 2002, Elevation of serum copper levels in Alzheimer’s disease. Neurology 59: 1153–1161.PubMedGoogle Scholar
  111. Suh, S.W., Jensen, K.B., Jensen, M.S., Silva, D.S., Kesslak, P.J., Danscher, G., and Frederickson, C.J., 2000, Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res. 852: 274–278.PubMedCrossRefGoogle Scholar
  112. Suzuki, K., Miura, T., and Takeuchi, H., 2001, Inhibitory effect of copper(ii) on zinc(ii)-induced aggregation of amyloid beta-peptide. Biochem. Biophys. Res. Commun. 285: 991–996.PubMedCrossRefGoogle Scholar
  113. Tanzi, R.E., Kovacs, D.M., Kim, T.W., Moir, R.D., Guenette, S.Y., and Wasco, W., 1996, The gene defects responsible for familial Alzheimer’s disease. Neurobiol. Dis. 3: 159–168.PubMedCrossRefGoogle Scholar
  114. Tully, C.L., Snowdon, D.A., and Markesbery, W.R., 1995, Serum zinc, senile plaques, and neurofibrillary tangles: Findings from the nun study. Neuroreport 6: 2105–2108.PubMedCrossRefGoogle Scholar
  115. Wasco, W., Bupp, K., Magendantz, M., Gusella, J.F., Tanzi, R.E., and Solomon, F., 1992, Identification of a mouse brain cdna that encodes a protein related to the Alzheimer disease-associated amyloid beta protein precursor. Proc. Natl. Acad. Sci. USA 89: 10758–10762.PubMedCrossRefGoogle Scholar
  116. Wasco, W., Gurubhagavatula, S., Paradis, M.D., Romano, D.M., Sisodia, S.S., Hyman, B.T., Neve, R.L., and Tanzi, R.E., 1993, Isolation and characterization of aplp2 encoding a homologue of the Alzheimer’s associated amyloid beta protein precursor. Nature Genet. 5: 95–100.PubMedCrossRefGoogle Scholar
  117. Weldon, D.T., Rogers, S.D., Ghilardi, J.R., Finke, M.P., Cleary, J.P., O’Hare, E., Esler, W.P., Maggio, J.E., and Mantyh, P.W., 1998, Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat cns in vivo. J. Neurosci. 18: 2161–2173.PubMedGoogle Scholar
  118. White, A.R., Multhaup, G., Maher, F., Bellingham, S., Camakaris, J., Zheng, H., Bush, A.I., Beyreuther, K., Masters, C.L., and Cappai, R., 1999, The Alzheimer’s disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. J. Neurosci. 19: 9170–9179.PubMedGoogle Scholar
  119. Winblad, B., Hardy, J., Backman, L., and Nilsson, L.G., 1985, Memory function and brain biochemistry in normal aging and in senile dementia. Ann. N. Y. Acad. Sci. 444: 255–268.PubMedGoogle Scholar
  120. Wolfe, M.S., 2003, The secretases of Alzheimer’s disease. Curr. Top. Dev. Biol. 54: 233–261.PubMedGoogle Scholar
  121. Yang, D.S., McLaurin, J., Qin, K., Westaway, D., and Fraser, P.E., 2000, Examining the zinc binding site of the amyloid-beta peptide. Eur. J. Biochem. 267: 6692–6698.PubMedCrossRefGoogle Scholar
  122. Yang, L.B., Lindholm, K., Yan, R., Citron, M., Xia, W., Yang, X.L., Beach, T., Sue, L., Wong, Price, D., Li, R., and Shen, Y., 2003, Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nature Med. 9: 3–4.PubMedCrossRefGoogle Scholar
  123. Yankner, B.A., Dawes, L.R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M.L., and Neve, R.L., 1989, Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245: 417–420.PubMedCrossRefGoogle Scholar
  124. Yoshiike, Y., Tanemura, K., Murayama, O., Akagi, T., Murayama, M., Sato, S., Sun, X., Tanaka, N., and Takashima, A., 2001, New insights on how metals disrupt amyloid beta-aggregation and their effects on amyloid-beta cytotoxicity. J. Biol. Chem. 276: 32293–32299.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Math P. Cuajungco
    • 1
  • Christopher J. Frederickson
    • 2
  • Ashley I. Bush
    • 3
  1. 1.Harvard Medical School and Massachusetts Eye and Ear InfirmaryBostonUSA
  2. 2.NeuroBioTex. Inc. and University of Texas Medical BranchGalvestonUSA
  3. 3.Harvard Medical School and Massachusetts General HospitalBostonUSA

Personalised recommendations