Skip to main content

Challenges to a Neuroanatomical Theory of Forebrain Auditory Plasticity

  • Conference paper

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakin, J. S., and Weinberger, N. M., 1990, Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res. 536: 271–286.

    Article  PubMed  CAS  Google Scholar 

  • Brandner, S., and Redies, H., 1990, The projection of the medial geniculate body to field AI: organization in the isofrequency dimension. J. Neurosci. 10: 50–61.

    PubMed  CAS  Google Scholar 

  • Calford, M. B., 2002, Dynamic representational plasticity in sensory cortex. Neuroscience 111: 709–738.

    Article  PubMed  CAS  Google Scholar 

  • Calford, M. B., Rajan, R., and Irvine, D. R. F., 1993, Rapid changes in the frequency tuning of neurons in cat auditory cortex resulting from pure-tone-induced temporary threshold shift. Neuroscience 55: 953–964.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, S. W., Bedenbaugh, P. H., Nagarajan, S. S., and Schreiner, C. E., 2001, Functional organization of squirrel monkey primary auditory cortex: responses to pure tones. J. Neurophysiol. 85: 1732–1749.

    PubMed  CAS  Google Scholar 

  • Diamond, D. M., and Weinberger, N. M., 1986, Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Res. 372: 357–360.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont, J. J., 1998, Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. J. Neurophysiol. 80: 2743–2764.

    PubMed  CAS  Google Scholar 

  • Evans, E. F., Ross, H. F., and Whitfield, I. C., 1965, The spatial distribution of unit characteristic frequency in the primary auditory cortex of the cat. J. Physiol. (London) 179:238–247.

    PubMed  CAS  Google Scholar 

  • Ferster, D., and LeVay, S., 1978, The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J. Comp. Neurol 182: 923–944.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, D., Diamond, I. T., and Raczkowski, D., 1989, Cholinergic and monoaminergic innervation of the cat’s thalamus: comparison of the lateral geniculate nucleus with other principal sensory nuclei. J. Comp. Neurol. 288:647–675.

    Article  PubMed  CAS  Google Scholar 

  • Frost, D. O., 1981, Orderly anomalous retinal projections to the medial geniculate, ventrobasal, and lateral posterior nuclei of the hamster. J. Comp. Neurol. 203: 227–256.

    Article  PubMed  CAS  Google Scholar 

  • Galvan, V. V., and Weinberger, N. M., 2002, Long-term consolidation and retention of learning-induced plasticity in the auditory cortex of the guinea pig. Neurobiol Learn. Mem. 77: 78–108.

    Article  PubMed  Google Scholar 

  • Huang, C. L., Larue, D. T., and Winer, J. A., 1999, GABAergic organization of the cat medial geniculate body. J. Comp. Neurol. 415: 368–392.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C. L., and Winer, J. A., 2000, Auditory thalamocortical projections in the cat: laminar and areal patterns of input. J. Comp. Neurol. 427: 302–331.

    Article  PubMed  CAS  Google Scholar 

  • Imig, T. J., and Morel, A., 1985, Tonotopic organization in ventral nucleus of medial geniculate body in the cat. J. Neurophysiol. 53: 309–340.

    PubMed  CAS  Google Scholar 

  • Imig, T. J., and Reale, R. A., 1980, Patterns of cortico-cortical connections related to tonotopic maps in cat auditory cortex. J. Comp. Neurol. 192: 293–332.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, D. R. F., Rajan, R., and McDermott, H. J., 2000, Injury-induced reorganization in adult auditory cortex and its perceptual consequences. Hear. Res. 147: 188–199.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. G., Burton, H., Saper, C. B., and Swanson, L. W., 1976, Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J. Comp. Neurol. 167: 385–420.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., 1997, Topographic maps are fundamental to sensory processing. Brain Res. Bull 44: 107–112.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., 1999, Is most of neural plasticity in the thalamus cortical? Proc. Natl. Acad. Sci. U.S.A. 96: 7622–7623.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., Florence, S. L., and Jain, N., 1999, Subcortical contributions to massive cortical reorganizations. Neuron 22: 657–660.

    Article  PubMed  CAS  Google Scholar 

  • Kilgard, M. P., and Merzenich, M. M., 1998, Cortical map reorganization enabled by nucleus basalis activity. Science 279: 1714–1718.

    Article  PubMed  CAS  Google Scholar 

  • Klyachko, V., and Stevens, C. F., 2003, Connectivity optimization and the positioning of cortical areas. Proc. Natl. Acad. Sci. U.S.A. 100: 7937–7941.

    Article  PubMed  CAS  Google Scholar 

  • Landry, P., and Deschênes, ML, 1981, Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. J. Comp. Neurol. 199: 345–372.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. C. Imaizumi, K., Schreiner, C. E., and Winer, J. A., 2004, Concurrent tonotopic processing streams in auditory cortex. Cereb. Cortex 14: in press.

    Google Scholar 

  • Lee, C. C. and Winer, J. A., 2003, Topographic projections in cat auditory cortex. Proc. Soc. Neurosci. 28: 592.15.

    Google Scholar 

  • Linden, J. S., Liu, R. C. Sahani, M., Schreiner, C. E., and Merzenich, M. M., 2003, Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. J. Neurophysiol. 90: 2660–2675.

    Article  PubMed  Google Scholar 

  • Merzenich, M. M., Knight, P. L., and Roth, G. L., 1975, Representation of cochlea within primary auditory cortex in the cat. J. Neurophysiol. 38: 231–249.

    PubMed  CAS  Google Scholar 

  • Metherate, R., and Ashe, J. H., 1995, Synaptic interactions involving acetylcholine, glutamate, and GABA in rat auditory cortex. Exp. Brain Res. 107: 59–72.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks, J. C., Dykes, R. W., and Merzenich, M. M., 1980, Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographic organization orthogonal to isofrequency contours. Brain Res. 181: 31–48.

    Article  PubMed  CAS  Google Scholar 

  • Mitani, A., Shimokouchi, M., and Nomura, S., 1983, Effects of stimulation of the primary auditory cortex upon colliculogeniculate neurons in the inferior colliculus of the cat. Neurosci. Lett. 42: 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Morel, A., and Imig, T. J., 1987, Thalamic projections to fields A, AI, P, and VP in the cat auditory cortex. J. Comp. Neurol. 265: 119–144.

    Article  PubMed  CAS  Google Scholar 

  • Morel, A., Rouiller, E., de Ribaupierre, Y., and de Ribaupierre, F., 1987, Tonotopic organization in the medial geniculate body (MGB) of lightly anesthetized cats. Exp. Brain Res. 69: 24–42.

    Article  PubMed  CAS  Google Scholar 

  • Pallas, S. L., Roe, A. W., and Sur, M., 1990, Visual projections induced into the auditory pathway of ferrets. I. Novel inputs to primary auditory cortex (AI) from the LP/pulvinar complex and the topography of the MGN-AI projection. J. Comp. Neurol. 298: 50–68.

    Article  PubMed  CAS  Google Scholar 

  • Paller, K. A., Hutson, C. A., Miller, B. B., and Boehm, S. G., 2003, Neural manifestations of memory with and without awareness. Neuron 38: 507–516.

    Article  PubMed  CAS  Google Scholar 

  • Rajan, R., and Irvine, D. R. F., 1998, Absence of plasticity of the frequency map in dorsal cochlear nucleus of adult cats after unilateral partial cochlear lesions. J. Comp. Neurol. 399: 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Read, H. L., Winer, J. A., and Schreiner, C. E., 2001, Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proc. Natl. Acad. Sci. U.S.A. 98: 8042–8047.

    Article  PubMed  CAS  Google Scholar 

  • Recanzone, G. H., 1998, Rapidly induced auditory plasticity: the ventriloquism aftereffect. Proc. Natl. Acad. Sci. U.S.A. 95: 869–875.

    Article  PubMed  CAS  Google Scholar 

  • Recanzone, G. H., Merzenich, M. M., and Jenkins, W. M., 1992, Frequency discrimination training engaging a restricted skin surface results in the emergence of a cutaneous response zone in cortical area 3a. J. Neurophysiol. 67: 1057–1070.

    PubMed  CAS  Google Scholar 

  • Recanzone, G. H., Schreiner, C. E., and Merzenich, M. M., 1993, Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13: 87–103.

    PubMed  CAS  Google Scholar 

  • Rouiller, E. M., Simm, G. M., Villa, A. E. P., de Ribaupierre, Y., and de Ribaupierre, F., 1991, Auditory corticocortical interconnections in the cat: evidence for parallel and hierarchical arrangement of the auditory cortical areas. Exp. Brain Res. 86: 483–505.

    Article  PubMed  CAS  Google Scholar 

  • Schieber, M. H., 2001, Constraints on somatotopic organization in the primary motor cortex. J. Neurophysiol. 86: 2125–2143.

    PubMed  CAS  Google Scholar 

  • Schreiner, C. E., 1995, Order and disorder in auditory cortical maps. Curr. Opin. Neurobiol. 5: 489–496.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner, C. E., and Cynader, M. S., 1984, Basic functional organization of second auditory cortical field (All) of the cat. J. Neurophysioi. 51: 1284–1305.

    CAS  Google Scholar 

  • Schreiner, C. E., Mendelson, J. R., and Sutter, M. L., 1992, Functional topography of cat primary auditory cortex: representation of tone intensity. Exp. Brain Res. 92: 105–122.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner, C. E., Read, H. L., and Sutter, M. L., 2000, Modular organization of frequency integration in primary auditory cortex. Ann. Rev. Neurosci. 23: 501–529.

    Article  PubMed  CAS  Google Scholar 

  • Villa, A. E. P., Rouiller, E. M., Simm, G. M., Zurita, P., de Ribaupierre, Y., and de Ribaupierre, F., 1991, Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp. Brain Res. 86: 506–517.

    Article  PubMed  CAS  Google Scholar 

  • Wall, J. T., 1988, Variable organization in cortical maps of the skin as an indication of the lifelong adaptive capacities of circuits in the mammalian brain. Trends Neurosci 11: 549–557.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg, R. J., 1997, Are topographic maps fundamental to sensory processing? Brain Res. Bull. 44: 113–116.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger, N. M., 1998, Tuning the brain by learning and by stimulation of the nucleus basalis. Trends Cog. Sci. 2: 271–273.

    Article  Google Scholar 

  • Weinberger, N. M., Hopkins, W., and Diamond, D. M., 1984, Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: I. Primary field (AI). Behav. Neurosci. 98: 171–188.

    Article  PubMed  CAS  Google Scholar 

  • Winer, J. A., 1992, The functional architecture of the medial geniculate body and the primary auditory cortex, In Springer Handbook of Auditory Research, volume 1, The Mammalian Auditory Pathway: Neuroanatomy (D. B. Webster, A. N. Popper, R. R. Fay, eds.), Springer-Verlag, New York, New York, pp.222–409.

    Google Scholar 

  • Winer, J. A., Diehl, J. J., and Lame, D. T., 2001, Projections of auditory cortex to the medial geniculate body of the cat. J. Comp. Neurol. 430: 27–55.

    Article  PubMed  CAS  Google Scholar 

  • Winer, J. A., Larue, D. T., Diehl, J. J., and Hefti, B. J., 1998, Auditory cortical projections to the cat inferior colliculus. J. Comp. Neurol. 400: 147–174.

    Article  PubMed  CAS  Google Scholar 

  • Winer, J. A., Larue, D. T., and Huang, C. L., 1999, Two systems of giant axon terminals in the cat medial geniculate body: convergence of cortical and GABAergic inputs. J. Comp. Neurol. 413: 181–197.

    Article  PubMed  CAS  Google Scholar 

  • Winer, J. A., and Prieto, J. J., 2001, Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons. J. Comp. Neurol. 434: 379–412.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L. I., Bao, S., and Merzenich, M. M., 2002, Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proc. Natl. Acad. Sci. U.S.A. 99:2309–2314.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Winer, J.A., Lee, C.C., Imaizumi, K., Schreiner, C.E. (2005). Challenges to a Neuroanatomical Theory of Forebrain Auditory Plasticity. In: Syka, J., Merzenich, M.M. (eds) Plasticity and Signal Representation in the Auditory System. Springer, Boston, MA . https://doi.org/10.1007/0-387-23181-1_10

Download citation

Publish with us

Policies and ethics