Skip to main content

Calpain Proteolysis and the Etiology of Parkinson’s Disease: An Emerging Hypothesis

  • Chapter
Proteases In The Brain

Part of the book series: Proteases In Biology and Disease ((PBAD,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho W-H, Castillo PE, Shinsky N, Verdugo JMG, Armanini M, Ryan A, Hynes M, Phillips HS, Sulzer D, Rosenthal A, 2000, Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 25:239–252.

    Article  CAS  PubMed  Google Scholar 

  • Aleyasin H, Cregan SP, Iyirhiaro G, O’Hare MJ, Callaghan SM, Slack RS, Park DS, 2004, Nuclear factor-(kappa)B modulates the p53 response in neurons exposed to DNA damage. J Neurosci. 24:2963–73.

    Article  CAS  PubMed  Google Scholar 

  • Aloe L, Fiore M, 1997, TNF-alpha expressed in the brain of transgenic mice lowers central tyroxine hydroxylase immunoreactivity and alters grooming behavior. Neurosci Lett. 238: 65–68.

    Article  CAS  PubMed  Google Scholar 

  • Appel SH, Smith RG, Alexianu M, Engelhardt J, Mosier D, Colom L, Stefani E, 1994, Neurodegenerative disease: autoimmunity involving calcium channels. Ann NY Acad Sci. 747:183–194.

    CAS  PubMed  Google Scholar 

  • Arima K, Hirai S, Sunohara N, Aoto K, Izumiyama Y, Ueda K, Ikeda K, Kawai M, 1999, Cellular co-localization of phosphorylated tau-and NACP/alpha-synuclein-epitopes in lewy bodies in sporadic Parkinson’s disease and in dementia with Lewy bodies. Brain Res. 843:53–61.

    Article  CAS  PubMed  Google Scholar 

  • Banati RB, Daniel SE, Blunt SB, 1998, Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord. 13:221–227.

    Article  CAS  PubMed  Google Scholar 

  • Beck KD, Valverde J, Alexi T, Poulsen K, Moffat B, Vandlen RA, Rosenthal A, Hefti F, 1995, Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature. 373:339–341.

    CAS  PubMed  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F, 1973, Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neural Sci. 20:415–455.

    CAS  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, 2000, Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 3:1301–1306.

    CAS  PubMed  Google Scholar 

  • Bezard E, Gross CE, Brotchie JM, 2003, Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci. 26:215–221.

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Crossman AR, Gross CE, Brotchie JM, 2001, Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson’s disease. FASEB J. 15:1092–1094.

    CAS  PubMed  Google Scholar 

  • Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA, Tsai LH, Kwon YT, Girault JA, Czernik AJ, Huganir RL, Hemmings HC, Jr., Nairn AC, Greengard P, 1999, Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature. 402:669–671.

    CAS  PubMed  Google Scholar 

  • Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ, 1999, Paraquat elicited neurobehavioural syndrome caused by dopaminergic neuron loss. Brain Res. 823: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ, 1983, A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA. 80:4546–4550.

    CAS  PubMed  Google Scholar 

  • Carafoli E, Molinari M, 1998, Calpain: a protease in search of a function? Biochem Biophys Res Commun. 247:193–203.

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A, 1959, The occurance, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev. 11:490–493.

    CAS  PubMed  Google Scholar 

  • Castano A, Herrera AJ, Cano J, Machado A, 1998, Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem. 70:1584–1592.

    CAS  PubMed  Google Scholar 

  • Chakrabarti AK, Dasgupta S, Gadsden RH, Sr., Hogan EL, Banik NL, 1996, Regulation of brain m calpain Ca2+ sensitivity by mixtures of membrane lipids: activation at intracellular Ca2+ level. J Neurosci Res. 44:374–380.

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Le WD, Xie WJ, Alexianu ME, Engelhardt JI, Siklos L, Appel SH, 1998, Experimental destruction of substantia nigra initiated by Parkinson disease immunoglobulins. Arch Neural. 55:1075–1080.

    CAS  Google Scholar 

  • Chen T, Koutsilieri E, Rausch W, 1995, MPP+ selectively affects calcium homeostasis in mesencephalic cell cultures from embronyl C57/B16 mice. J Neural Transm. 100:153–163.

    Article  CAS  Google Scholar 

  • Chera B, Schaecher KE, Rocchini A, Imam SZ, Ray SK, Ali SF, Banik NL, 2002, Calpain upregulation and neuron death in spinal cord of MPTP-induced parkinsonism in mice. Ann NY Acad Sci. 965:274–280.

    CAS  PubMed  Google Scholar 

  • Chergui K, Svenningsson P, Greengard P, 2004, Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. Proc Natl Acad Sci USA. 101:2191–2196.

    Article  CAS  PubMed  Google Scholar 

  • Cressman CM, Mohan PS, Nixon RA, Shea TB, 1995, Proteolysis of protein kinase C: mM and microM calcium-requiring calpains have different abilities to generate, and degrade the free catalytic subunit, protein kinase M. FEBS Lett. 367:223–227.

    Article  CAS  PubMed  Google Scholar 

  • Croall DE, McGrody KS, 1994, Domain structure of calpain: mapping the binding site for calpastatin. Biochemistry. 33:13223–13230.

    Article  CAS  PubMed  Google Scholar 

  • Crocker SJ, Lamba WR, Smith PD, Callaghan SM, Slack RS, Anisman H, Park DS, 2001a, c-Jun mediates axotomy-induced dopamine neuron death in vivo. Proc Natl Acad Sci USA. 98:13385–13390.

    Article  CAS  PubMed  Google Scholar 

  • Crocker SJ, Listen P, Anisman H, Lee CJ, Smith PD, Earl N, Thompson CS, Park DS, Korneluk RG, Robertson GS, 2003a, Attenuation of MPTP-induced neurotoxicity and behavioural impairment in NSE-XIAP transgenic mice. Neurobiol Dis. 12:150–161.

    Article  CAS  PubMed  Google Scholar 

  • Crocker SJ, Wigle N, Listen P, Thompson CS, Lee CJ, Xu D, Roy S, Nicholson DW, Park DS, MacKenzie A, Korneluk RG, Robertson GS, 2001b, NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6-OHDA rat model of Parkinson’s disease. Eur J Neurosci. 14:391–400.

    Article  CAS  PubMed  Google Scholar 

  • Crocker SJ, Smith PD, Jackson-Lewis V, Lamba WR, Hayley SP, Grimm E, Callaghan SM, Slack RS, Melloni E, Przedborski S, Robertson GS, Anisman H, Merali Z, Park DS, 2003b, Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson’s disease. J Neurosci. 23:4081–4091.

    CAS  PubMed  Google Scholar 

  • Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH, 2003, Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron. 40:471–483.

    Article  CAS  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM, 1999, The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 122( Pt 8):1437–1448.

    PubMed  Google Scholar 

  • Dawson TM, Dawson VL, 2003, Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 302:819–822.

    Article  CAS  PubMed  Google Scholar 

  • Dayton WR, Reville WJ, Goll DE, Stromer MH, 1976a, A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme. Biochemistry. 15:2159–2167.

    CAS  PubMed  Google Scholar 

  • Dayton WR, Goll DE, Zeece MG, Robson RM, Reville WJ, 1976b, A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry. 15:2150–2158.

    CAS  PubMed  Google Scholar 

  • Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB, 2004, Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem. 88:494–501.

    CAS  PubMed  Google Scholar 

  • Depino AM, Earl C, Kaczmarczyk E, Ferrari C, Besedovsky H, del Rey A, Pitossi FJ, Oertel WH, 2003, Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Ear J Neurosci. 18:2731–2742.

    Google Scholar 

  • Dice JF, 1987, Molecular determinants of protein half-lives in eukaryotic cells. FASEB J. 1: 349–357.

    CAS  PubMed  Google Scholar 

  • Duan W, Zhu X, Ladenheim B, Yu QS, Guo Z, Oyler J, Cutler RG, Cadet JL, Greig NH, Mattson MP, 2002, p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neural. 52:597–606.

    CAS  Google Scholar 

  • Eberhardt O, Coelln RV, Kugler S, Lindenau J, Rathke-Hartlieb S, Gerhardt E, Haid S, Isenmann S, Gravel C, Srinivasan A, Bahr M, Weller M, Dichgans J, Schulz JB, 2000, Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci. 20:9126–9134.

    CAS  PubMed  Google Scholar 

  • Elkon H, Melamed E, Offen D, 2001, 6-Hydroxydopamine increases ubiquitin-conjugates and protein degradation: implications for the pathogenesis of Parkinson’s disease. Cell Mol Neurobiol. 21:771–781.

    Article  CAS  PubMed  Google Scholar 

  • Fahn S, Elton RL, 1987, Unified Parkinson’s Disease Rating Scale. In: Recent developments in Parkinson’s disease (Fahn S, Marsden CD, Calne D, Goldstein M, eds), pp 153–163. Florham Park, N.J.: MacMillan Health Care Information.

    Google Scholar 

  • Ferrer I, Blanco R, Carmona M, Puig B, Barrachina M, Gomez C, Ambrosio S, 2001, Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson’s disease and Dementia with Lewy bodies. J Neural Transm. 108:1383–1396.

    CAS  PubMed  Google Scholar 

  • Fox SH, Brotchie JM, 2000, 5-HT2C receptor binding is increased in the substantia nigra pars reticulata in Parkinson’s disease. Mov Disord. 15:1064–1069.

    Article  CAS  PubMed  Google Scholar 

  • Fox SH, Moser B, Brotchie JM, 1998, Behavioral effects of 5-HT2C receptor antagonism in the substantia nigra zona reticulata of the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Exp Neural. 151:35–49.

    CAS  Google Scholar 

  • Frei B, Richter C, 1986, N-methyl-4-phenylpyridine (MMP+) together with 6-hydroxydopamine or dopamine stimulates Ca2+ release from mitochondria. FEBS Lett. 198:99–102.

    Article  CAS  PubMed  Google Scholar 

  • Freidrich MJ, 1999, Pesticide study aids Parkinson research. JAMA. 282:2200.

    Google Scholar 

  • Gao H-M, Liu B, Zhang W, Hong J-S, 2003a, Synergisitc dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiololgy of Parkinson’s disease. FASEB J. 17:1957–1959.

    CAS  PubMed  Google Scholar 

  • Gao H-M, Hong J-S, Zhang W, Liu B, 2003b, Synergistic Dopaminergic Neurotoxicity of the Pesticide Rotenone and Inflammogen Lipopolysaccharide: Relevance to the Etiology of Parkinson’s disease. J Neurosci. 23:1228–1236.

    CAS  PubMed  Google Scholar 

  • Gayle DA, Ling Z, Tong C, Landers T, Lipton JW, Carvey PM, 2002, Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-lbeta, and nitric oxide. Brain Res Dev Brain Res. 133:27–35.

    CAS  PubMed  Google Scholar 

  • Giasson BI, Lee VM-Y, 2003, Are Ubiquitination Pathways Central to Parkinson’s Disease? Cell. 114:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Gitler D, Spira ME, 1998, Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation. Neuron. 20:1123–1135.

    Article  CAS  PubMed  Google Scholar 

  • Glinka Y, Gassen M, Youdim MB, 1997, Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl. 50:55–66.

    CAS  PubMed  Google Scholar 

  • Glinka YY, Youdim MB, 1995, Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Ear J Pharmacol. 292:329–332.

    CAS  Google Scholar 

  • Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, Shen J, 2003, Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem. 278:43628–43635.

    CAS  PubMed  Google Scholar 

  • Gonen H, Shkedy D, Barnoy S, Kosower NS, Ciechanover A, 1997, On the involvement of calpains in the degradation of the tumor suppressor protein p53. FEBS Lett. 406:17–22.

    Article  CAS  PubMed  Google Scholar 

  • Gong X, Tang X, Wiedmann M, Wang X, Peng J, Zheng D, Blair LA, Marshall J, Mao Z, 2003, Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron. 38:33–46.

    Article  CAS  PubMed  Google Scholar 

  • Goralski KB, Renton KW, 2004, Brain inflammation enhances 1-methyl-4-phenylpyridinium-evoked neurotoxicity in rats. Toxicol Appl Pharmacol. 196:381–389.

    Article  CAS  PubMed  Google Scholar 

  • Gu G, Deutch AY, Franklin J, Levy S, Wallace DC, Zhang J, 2003, Profiling genes related to mitochondrial function in mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun. 308:197–205.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC, 2000, Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA. 97:2875–2880.

    CAS  PubMed  Google Scholar 

  • Heikkila RE, Cohen G, 1971, Inhibition of biogenic amine uptake by hydrogen peroxide: a mechanism for toxic effects of 6-hydroxydopamine. Science. 172:1257–1258.

    CAS  PubMed  Google Scholar 

  • Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M, Simmons L, Moffet B, Vandlen RA, Simpson LC, et al 1994, GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science. 266:1062–1064.

    CAS  PubMed  Google Scholar 

  • Hirai S, Kawasaki H, Yaniv M, Suzuki K, 1991, Degradation of transcription factors, c-Jun and c-Fos, by calpain. FEBS Lett. 287:57–61.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP, 2003, The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci. 991:214–228.

    CAS  PubMed  Google Scholar 

  • Holtz WA, O’Malley KL, 2003, Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 278:19367–19377.

    CAS  PubMed  Google Scholar 

  • Huang J, Forsberg NE, 1998, Role of calpain in skeletal-muscle protein degradation. Proc Natl Acad Sci USA. 95:12100–12105.

    CAS  PubMed  Google Scholar 

  • Iravani MM, Kashefi K, Mander P, Rose S, Jenner P, 2002, Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience. 110:49–58.

    Article  CAS  PubMed  Google Scholar 

  • Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M, Araujo F, Negroni J, Casarejos MJ, Canals S, Solano R, Serrano A, Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney TA, Brice A, Garcia de Yebenes J, 2003, Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet. 12:2277–2291.

    Article  CAS  PubMed  Google Scholar 

  • Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S, 1995, Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methy 1-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration. 4:257–269.

    CAS  PubMed  Google Scholar 

  • Jellinger K, Linert L, Kienzl E, Herlinger E, Youdim MB, 1995, Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease. J Neural Transm Suppl. 46:297–314.

    CAS  PubMed  Google Scholar 

  • Jellinger KA, 2002, Recent developments in the pathology of Parkinson’s disease. J Neural Transm Suppl:347–376.

    Google Scholar 

  • Keramaris E, Hirao A, Slack RS, Mak TW, Park DS, 2003, Ataxia telangiectasia-mutated protein can regulate p53 and neuronal death independent of Chk2 in response to DNA damage. J Biol Chem. 278:37782–37789.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi H, Imajoh-Ohmi S, 1995, Antibodies specific for proteolyzed forms of protein kinase C alpha. Biochim Biophys Acta. 1269:253–259.

    PubMed  Google Scholar 

  • Kim SJ, Sung JY, Urn JW, Hattori N, Mizuno Y, Tanaka K, Paik SR, Kim J, Chung KC, 2003, Parkin cleaves intracellular alpha-synuclein inclusions via the activation of calpain. J Biol Chem 278:41890–41899.

    CAS  PubMed  Google Scholar 

  • Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS, 2000, Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci. 20:6309–6316.

    CAS  PubMed  Google Scholar 

  • Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Bjorklund A. 2003, Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci USA. 100: 2884–2889.

    Article  CAS  PubMed  Google Scholar 

  • Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Bjorklund A, 2002, Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci. 22:2780–2791.

    CAS  PubMed  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N, 1998, Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 392:605–608.

    CAS  PubMed  Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O, 1998, Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108.

    CAS  PubMed  Google Scholar 

  • Kuhn K, Wellen J, Link N, Maskri L, Lubbert H, Stichel CC, 2003, The mouse MPTP model: gene expression changes in dopaminergic neurons. Eur J Neurosci. 17:1–12.

    Article  PubMed  Google Scholar 

  • Kupsch A, Sautter J, Schwarz J, Riederer P, Gerlach M, Oertel WH, 1996, 1-Methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level. Brain Res. 741:185–196.

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM, 1998, Parkinson’s disease. First of two parts. N Engl J Med. 339: 1044–1053.

    CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I, 1983, Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 219:979–980.

    CAS  PubMed  Google Scholar 

  • Langston JW, Irwin I, Langston EB, Forao LS, 1984a, l-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci Lett. 48:87–92.

    CAS  PubMed  Google Scholar 

  • Langston JW, Irwin I, Langston EB, Forno LS, 1984b, Pargyline prevents MPTP-induced parkinsonism in primates. Science. 225:1480–1482.

    CAS  PubMed  Google Scholar 

  • Lavoie B, Parent A, 1991, Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. Neuroreport. 2:601–604.

    CAS  PubMed  Google Scholar 

  • Le WD, Engelhardt J, Xie WJ, Schneider L, Smith RG, Appel SH, 1995, Experimental autoimmune nigral damage in guinea pigs. J Neuroimmunol. 57:45–53.

    Article  CAS  PubMed  Google Scholar 

  • Levin MC, Krichavsky M, Berk J, Foley S, Rosenfeld M, Dalmau J, Chang G, Posner JB, Jacobson S, 1998, Neuronal molecular mimicry in immune-mediated neurologic disease. Ann Neurol. 44:87–98.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Grynspan F, Berman S, Nixon R, Bursztajn S, 1996, Regional differences in gene expression for calcium activated neutral proteases (calpains) and their endogenous inhibitor calpastatin in mouse brain and spinal cord. J Neurobiol. 30:177–191.

    Article  CAS  PubMed  Google Scholar 

  • Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S, 1999, Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med. 5: 1403–1409.

    CAS  PubMed  Google Scholar 

  • Lim KL, Dawson VL, Dawson TM, 2003, The Cast of Molecular Characters in Parkinson’s disease: Felons, Conspirators, and Suspects. Ann N Y Acad Sci. 991:80–92.

    CAS  PubMed  Google Scholar 

  • Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P, 2002, alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci USA. 99:10813–10818.

    PubMed  Google Scholar 

  • Mandir AS, Simbulan-Rosenthal CM, Poitras MF, Lumpkin JR, Dawson VL, Smulson ME, Dawson TM, 2002, A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced parkinsonism. J Neurochem. 83:186–192.

    Article  CAS  PubMed  Google Scholar 

  • Markey SP, Johannessen JN, Chiueh CC, Burns RS, Herkenham MA, 1984, Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature. 311:464–467.

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG, Suzuki JS, 1977, Aging and extrapyramidal function. Arch Neurol. 34:33–35.

    CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Akiyama H, McGeer EG, 1988, Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol. 24:574–576.

    Article  CAS  PubMed  Google Scholar 

  • McGinnis KM, Gnegy ME, Park YH, Mukerjee N, Wang KK, 1999, Procaspase-3 and poly(ADP)ribose polymerase (PARP) are calpain substrates. Biochem Biophys Res Commun. 263:94–99.

    Article  CAS  PubMed  Google Scholar 

  • McMahon A, Wong BS, Iacopino AM, Ng MC, Chi S, German DC, 1998, Calbindin-D28k buffers intracellular calcium and promotes resistance to degeneration in PC 12 cells. Brain Res Mol Brain Res. 54:56–63.

    CAS  PubMed  Google Scholar 

  • McNaught KS, Belizaire R, Jenner P, Olanow CW, Isacson O, 2002a, Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci Lett. 326:155–158.

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW, 2003, Altered proteasomal function in sporadic Parkinson’s disease. Exp Neural. 179:38–46.

    CAS  Google Scholar 

  • McNaught KS, Bjorklund LM, Belizaire R, Isacson O, Jenner P, Olanow CW, 2002b, Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport. 13:1437–1441.

    CAS  PubMed  Google Scholar 

  • McNaught KS, Mytilineou C, Jnobaptiste R, Yabut J, Shashidharan P, Jennert P, Olanow CW, 2002c, Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem. 81: 301–306.

    Article  CAS  PubMed  Google Scholar 

  • Milligan SA, Owens MW, Grisham MB, 1996, Inhibition of IkappaB-alpha and IkappaB-beta proteolysis by calpain inhibitor I blocks nitric oxide synthesis. Arch Biochem Biophys 335:388–395.

    Article  CAS  PubMed  Google Scholar 

  • Mishizen-Eberz AJ, Guttmann RP, Giasson BI, Day GA, 3rd, Hodara R, Ischiropoulos H, Lee VM, Trojanowski JQ, Lynch DR, 2003, Distinct cleavage patterns of normal and pathologic forms of alpha-synuclein by calpain I in vitro. J Neurochem. 86:836–847.

    Article  CAS  PubMed  Google Scholar 

  • Montagu KA, 1957, Catechol compounds in rat tissues and in brains of different animals. Nature 180:244.

    CAS  PubMed  Google Scholar 

  • Morrison RS, Kinoshita Y, 2000, The role of p53 in neuronal cell death. Cell Death Differ. 7: 868–879.

    Article  CAS  PubMed  Google Scholar 

  • Mouatt-Prigent A, Karlsson JO, Agid Y, Hirsch EC, 1996, Increased M-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neuroscience. 73:979–987.

    Article  CAS  PubMed  Google Scholar 

  • Mouatt-Prigent A, Karlsson JO, Yelnik J, Agid Y, Hirsch EC, 2000, Calpastatin immunoreactivity in the monkey and human brain of control subjects and patients with Parkinson’s disease. J Comp Neurol. 419:175–192.

    Article  CAS  PubMed  Google Scholar 

  • Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R, 2003, Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem. 278:14162–14167.

    Article  CAS  PubMed  Google Scholar 

  • Nishi K, 1997, Expression of c-Jun in dopaminergic neurons of the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Brain Res. 771:133–141.

    Article  CAS  PubMed  Google Scholar 

  • Offen D, Halevi S, Orion D, Mosberg R, Stern-Goldberg H, Melamed E, Atlas D, 1998, Antibodies from ALS patients inhibit dopamine release mediated by L-type calcium channels. Neurology. 51:1100–1103.

    CAS  PubMed  Google Scholar 

  • Olanow CW, Tatton WG, 1999, Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci. 22:123–144.

    Article  CAS  PubMed  Google Scholar 

  • Pariat M, Carillo S, Molinari M, Salvat C, Debussche L, Bracco L, Milner J, Piechaczyk M, 1997, Proteolysis by calpains: a possible contribution to degradation of p53. Mol Cell Biol. 17:2806–2815.

    CAS  PubMed  Google Scholar 

  • Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH, 1999, Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 402:615–622.

    CAS  PubMed  Google Scholar 

  • Patzke H, Tsai LH, 2002, Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J Biol Chem. 277:8054–8060.

    Article  CAS  PubMed  Google Scholar 

  • Perlmutter LS, Gall C, Baudry M, Lynch G, 1990, Distribution of calcium-activated protease calpain in the rat brain. J Comp Neurol. 296:269–276.

    Article  CAS  PubMed  Google Scholar 

  • Perry TL, Yong VW, Wall RA, Jones K, 1986, Paraquat and two endogenous analogues of the neurotoxic substance N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine do not damage dopaminergic nigrostriatal neurons in the mouse. Neurosci Lett. 69:285–289.

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL, 1997, Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047.

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G, 2000, The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci. 16:135–142.

    CAS  PubMed  Google Scholar 

  • Ray SK, Wilford GG, Ali SF, Banik NL, 2000, Calpain upregulation in spinal cords of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease. Ann NY Acad Sci. 914:275–283.

    CAS  PubMed  Google Scholar 

  • Rideout HJ, Larsen KE, Sulzer D, Stefanis L, 2001, Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC 12 cells. J Neurochem. 78: 899–908.

    Article  CAS  PubMed  Google Scholar 

  • Rideout HJ, Wang Q, Park DS, Stefanis L, 2003, Cyclin-dependent kinase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J Neurosci. 23:1237–1245.

    CAS  PubMed  Google Scholar 

  • Riederer P, Wuketich S, 1976, Time course of nigrostriatal degeneration in parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm. 38:277–301.

    Article  CAS  PubMed  Google Scholar 

  • Roberts-Lewis JM, Savage MJ, Marcy VR, Pinsker LR, Siman R, 1994, Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J Neurosci. 14:3934–3944.

    CAS  PubMed  Google Scholar 

  • Rowe DB, Le W, Smith RG, Appel SH, 1998, Antibodies from patients with Parkinson’s disease react with protein modified by dopamine oxidation. J Neurosci Res. 53:551–558.

    Article  CAS  PubMed  Google Scholar 

  • Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA, 2002, Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci. 22:10690–10698.

    CAS  PubMed  Google Scholar 

  • Sauer H, Oertel WH, 1994, Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience. 59:401–415.

    Article  CAS  PubMed  Google Scholar 

  • Sawada H, Kohno R, Kihara T, Izumi Y, Sakka N, Ibi M, Nakanishi M, Nakamizo T, Yamakawa K, Shibasaki H, Yamamoto N, Akaike A, Inden M, Kitamura Y, Taniguchi T, Shimohama S, 2004, Proteasome mediates dopaminergic neuronal degeneration, and its inhibition causes alpha-synuclein inclusions. J Biol Chem. 279:10710–10719.

    Article  CAS  PubMed  Google Scholar 

  • Scholzke MN, Potrovita I, Subramaniam S, Prinz S, Schwaninger M, 2003, Glutamate activates NF-kappaB through calpain in neurons. Eur J Neurosci. 18:3305–3310.

    Article  PubMed  Google Scholar 

  • Sedarous M, Keramaris E, O’Hare M, Melloni E, Slack RS, Elce JS, Greer PA, Park DS, 2003, Calpains mediate p53 activation and neuronal death evoked by DNA damage. J Biol Chem. 278:26031–26038.

    Article  CAS  PubMed  Google Scholar 

  • Sedelis M, Hofele K, Auburger GW, Morgan S, Huston JP, Schwarting RK, 2000, MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behav Genet. 30:171–182.

    Article  CAS  PubMed  Google Scholar 

  • Shea TB, Cressman CM, Spencer MJ, Beermann ML, Nixon RA, 1995, Enhancement of neurite outgrowth following calpain inhibition is mediated by protein kinase C. J Neurochem. 65:517–527.

    CAS  PubMed  Google Scholar 

  • Sheehan JP, Swerdlow RH, Parker WD, Miller SW, Davis RE, Turtle JB, 1997, Altered calcium homeostasis in cells transformed by mitochondria from individuals with Parkinson’s disease. J Neurochem. 68:1221–1233.

    CAS  PubMed  Google Scholar 

  • Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT, 2002, An in vitro model of Parkinson’s disease: linking mitochondril impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci. 22:7006–7015.

    CAS  PubMed  Google Scholar 

  • Shimada H, Hirai K-I, Simamura E, Pan J, 1998, Mitochondrial NADH-quinone oxidoreductase of the outer membrane is responsible for paraquat cytotoxicity in rat livers. Arch Biochem Biophys. 351:75–81.

    Article  CAS  PubMed  Google Scholar 

  • Shumway SD, Maki M, Miyamoto S, 1999, The PEST domain of IkappaBalpha is necessary and sufficient for in vitro degradation by mu-calpain. J Biol Chem. 274:30874–30881.

    Article  CAS  PubMed  Google Scholar 

  • Siman R, Baudry M, Lynch G, 1984, Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease. Proc Natl Acad Sci USA. 81:3572–3576.

    CAS  PubMed  Google Scholar 

  • Siman R, Baudry M, Lynch G, 1985a, Regulation of glutamate receptor binding by the cytoskeletal protein fodrin. Nature. 313:225–228.

    Article  CAS  PubMed  Google Scholar 

  • Siman R, Gall C, Perlmutter LS, Christian C, Baudry M, Lynch G, 1985b, Distribution of calpain I, an enzyme associated with degenerative activity, in rat brain. Brain Res. 347: 399–403.

    Article  CAS  PubMed  Google Scholar 

  • Smith PD, O’Hare MJ, Park DS, 2004, Emerging Pathogenic Role for Cyclin Dependent Kinases in Neurodegeneration. Cell Cycle. 3:289–291.

    CAS  PubMed  Google Scholar 

  • Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S, Mount MP, O’Hare MJ, Callaghan S, Slack RS, Przedborski S, Anisman H, Park DS, 2003, Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA. 100:13650–13655.

    CAS  PubMed  Google Scholar 

  • Spehlmann R, Stahl SM, 1976, Dopamine acetylcholine imbalance in Parkinson’s disease. Possible regenerative overgrowth of cholinergic axon terminals. Lancet 1:724–726.

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M, 1997, Alpha-synuclein in Lewy Bodies. Nature. 388:839–840.

    Article  CAS  PubMed  Google Scholar 

  • Stefanova N, Schanda K, Klimaschewski L, Poewe W, Wenning GK, Reindl M, 2003, Tumor necrosis factor-alpha-induced cell death in U373 cells overexpressing alpha-synuclein. J Neurosci Res 73:334–340.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Sorimachi H, 1998, A novel aspect of calpain activation. FEBS Lett. 433:1–4.

    Article  CAS  PubMed  Google Scholar 

  • Svenson LW, 1991, Regional disparities in the annual prevalence rates of Parkinson’s disease in Canada. Neuroepidemiology. 10:205–210.

    CAS  PubMed  Google Scholar 

  • Takahashi M, Yamada T, 2001, A possible role of influenza A virus infection for Parkinson’s disease. Adv Neurol. 86:91–104.

    CAS  PubMed  Google Scholar 

  • Takahashi M, Iseki E, Kosaka K, 2000, Cyclin-dependent kinase 5 (Cdk5) associated with Lewy bodies in diffuse Lewy body disease. Brain Res. 862:253–256.

    Article  CAS  PubMed  Google Scholar 

  • Tanner CM, Goldman SM, 1996, Epidemiology of Parkinson’s disease. Neurol Clin 14:317–335.

    Article  CAS  PubMed  Google Scholar 

  • Teismann P, Schwaninger M, Weih F, Ferger B, 2001, Nuclear factor-kappaB activation is not involved in a MPTP model of Parkinson’s disease. Neuroreport. 12:1049–1053.

    CAS  PubMed  Google Scholar 

  • Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, Vila M, Jackson-Lewis V, Przedborski S, 2003, Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci USA. 100:5473–5478.

    Article  CAS  PubMed  Google Scholar 

  • Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA, 2000, The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson”s disease. J Neurosci. 20:9207–9214.

    CAS  PubMed  Google Scholar 

  • Tofaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG, 2003, Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J Biol Chem. 278:44405–44411.

    Article  CAS  PubMed  Google Scholar 

  • Tomac A, Widenfalk J, Lin LF, Kohno T, Ebendal T, Hoffer BJ, Olson L, 1995, Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc Natl Acad Sci USA. 92:8274–8278.

    CAS  PubMed  Google Scholar 

  • Trimmer PA, Smith TS, Jung AB, Bennett JP, Jr., 1996, Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration. 5: 233–239.

    Article  CAS  PubMed  Google Scholar 

  • Trimmer PA, Borland MK, Keeney PM, Bennett JP, Jr., Parker WD, Jr., 2004, Parkinson’s disease transgenic mitochondril cybrids generate Lewy inclusion bodies. J Neurochem. 88:800–812.

    CAS  PubMed  Google Scholar 

  • Tseng JL, Baetge EE, Zurn AD, Aebischer P, 1997, GDNF reduces drug-induced rotational behavior after medial forebrain bundle transection by a mechanism not involving striatal dopamine. J Neurosci. 17:325–333.

    CAS  PubMed  Google Scholar 

  • Turmel H, Hartmann A, Parain K, Douhou A, Srinivasan A, Agid Y, Hirsch EC, 2001, Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-treated mice. Mov Disord. 16:185–189.

    Article  CAS  PubMed  Google Scholar 

  • Ungerstedt U, 1968, 6-hydroxydopamine induced degeneration of central monoamine neurons. Eur J Pharm. 5:107–110.

    CAS  Google Scholar 

  • Wang KK, Posmantur R, Nadimpalli R, Nath R, Mohan P, Nixon RA, Talanian RV, Keegan M, Herzog L, Allen H, 1998, Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys. 356:187–196.

    CAS  PubMed  Google Scholar 

  • Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S, 2002, Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci. 22:1763–1771.

    CAS  PubMed  Google Scholar 

  • Wullner U, Kornhuber J, Weller M, Schulz JB, Loschmann PA, Riederer P, Klockgether T, 1999, Cell death and apoptosis regulating proteins in Parkinson’s disease—a cautionary note. Acta Neuropathol(Berl). 97:408–412.

    CAS  Google Scholar 

  • Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB, 2001, Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98:10433–10438.

    CAS  PubMed  Google Scholar 

  • Yamada T, Yamanaka I, Nakajima S, 1996, Immunohistochemistry of a cytoplasmic dynein (MAP 1C)-like molecule in rodent and human brain tissue: an example of molecular mimicry between cytoplasmic dynein and influenza A virus. Acta Neuropathol (Berl) 92: 306–311.

    CAS  Google Scholar 

  • Yamada T, McGeer PL, Baimbridge KG, McGeer EG, 1990, Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res. 526: 303–307.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc. Dordrecht

About this chapter

Cite this chapter

Crocker, S.J., Smith, P.D., Park, D.S. (2005). Calpain Proteolysis and the Etiology of Parkinson’s Disease: An Emerging Hypothesis. In: Lendeckel, U., Hooper, N.M. (eds) Proteases In The Brain. Proteases In Biology and Disease, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-23101-3_2

Download citation

Publish with us

Policies and ethics