Skip to main content

Interference, Information and Performance in Linear Matrix Modulation

  • Chapter
Emerging Location Aware Broadband Wireless Ad Hoc Networks
  • 328 Accesses

Abstract

The choice of basis for linear matrix modulation (linear space-time code with rotated and linearly combined constellation) is considered. Unitarily invariant polynomials of square matrices are discussed, the full spectrum of invariants interpolating between the well-known trace and determinant. These give the full spectrum of space-time code design criteria. The diagonal dominance (expansion around the trace) of these invariants is considered. Using this, it is shown that minimizing the self-interference, or equivalently, maximizing the second order expansion coefficient of the mutual information around SNR=0, is required when maximizing the mutual information and/or optimizing performance at any SNR. As an example, symbol rate 3 schemes for 4 transmit antennas are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

eferences

  1. G. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Tech. J., pp. 41–59, 1996.

    Google Scholar 

  2. E. Telatar, “Capacity of multi-antenna gaussian channels,” Eur. Trans. Telecomm., vol. 10, no. 6, pp. 585–5950, Nov/Dec 1999.

    Article  Google Scholar 

  3. J. Winters, “On the capacity of radio communication systems with diversity in a Rayleigh fading environment,” IEEE J. Sel. Areas Comm., vol. 5, no. 5, pp. 871–878, June 1987.

    Article  Google Scholar 

  4. P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” in Proc. URSI Int. Symp. on Signals, Systems and Electronics, September 1998, pp. 295–300.

    Google Scholar 

  5. V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inf. Th., vol. 45, no. 5, pp. 1456–1467, July 1999.

    MathSciNet  MATH  Google Scholar 

  6. R. Heath, Jr., H. Bölcskei, and A. Paulraj, “Space-time signaling and frame theory,” in Proc. IEEE ICASSP, 2001, vol. 2, pp. 1194–1199.

    Google Scholar 

  7. B. Hassibi and B. Hochwald, “High-rate codes that are linear in space and rime,” IEEE Trans. Inf. Th., vol. 48, no. 7, pp. 1804–1824, July 2002.

    MathSciNet  MATH  Google Scholar 

  8. M. Damen and N. Beaulieu, “A study of some space-time codes with rates beyond one symbol per channel use,” in Proc. IEEE GLOBECOM, November 2001, vol. 1, pp. 445–449.

    Google Scholar 

  9. O. Tirkkonen and A. Hottinen, “Improved MIMO performance with nonorthogonal space-time block codes,” in Proc. IEEE GLOBECOM, November 2001, vol. 2, pp. 1122–1126.

    Google Scholar 

  10. O. Tirkkonen and R. Kashaev, “Combined information and performance optimization of linear MIMO modulations,” in Proc. IEEE ISIT, July 2002, p. 76.

    Google Scholar 

  11. R. Heath, Jr. and A. Paulraj, “Linear dispersion codes for MIMO systems based on frame theory,” IEEE Trans. Sign. Proc., vol. 50, no. 10, pp. 2429–2441, Oct. 2002.

    Google Scholar 

  12. H. El Gamal and M. Damen, “Universal space-time coding,” IEEE Trans. Inf Th., 2003.

    Google Scholar 

  13. R. Kashaev and O. Tirkkonen, “Linear matrix modulators from group representation theory,” in Proc. IEEE Inf Th. Worksh., March 2003, pp. 42–45.

    Google Scholar 

  14. A. Hottinen, O. Tirkkonen, and R. Wichman, Multiantenna Transceiver Techniques for 3G and Beyond, Chichester: John Wiley and Sons, 2003.

    Google Scholar 

  15. J.-C. Guey, M. Fitz, M. Bell, and W.-Y. Kuo, “Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels,” in Proc. IEEE VTC, Spring, 1996, pp. 136–140.

    Google Scholar 

  16. V. Tarokh, N. Seshadri, and A. Calderbank, “Space-time codes for high data-rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inf Th., vol. 44, no. 2, pp. 744–765, Mar. 1998.

    MathSciNet  MATH  Google Scholar 

  17. D. M. Ionescu, “New results on space-time code design criteria,” in Proc. IEEE WCNC, September 1999, pp. 684–687.

    Google Scholar 

  18. E. Biglieri, G. Taficco, and A. Tulino, “Performance of space-time codes for a large number of antennas,” IEEE Trans. Inf Th., vol. 48, no. 7, pp. 1794–1803, July 2002.

    MATH  Google Scholar 

  19. R. Kashaev and O. Tirkkonen, “On expansion of MIMO mutual information in SNR,” in Proc. IEEE ISIT, July 2002, p. 252.

    Google Scholar 

  20. S. Verd, “Spectral efficiency in the wideband regime,” IEEE Trans. Inf Th., vol. 48, no. 2, pp. 1319–1343, June 2002.

    Google Scholar 

  21. R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1985.

    Google Scholar 

  22. O. Tirkkonen, A. Boariu, and A. Hottinen, “Minimal non-orthogonality rate one space-time block code for 3+ Tx antennas,” in Proc. IEEE ISSSTA, September 2000, vol. 2, pp. 429–432.

    Google Scholar 

  23. Y. Yasuda, K. Kashiki, and Y. Hirata, “High-rate punctured convolutional codes for soft decision Viterbi decoding,” IEEE Trans. Comm., vol. COM-32, no. 3, pp. 315–319, Mar. 1984.

    Google Scholar 

  24. A. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications, New York: Academic Press, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Tirkkonen, O., Kokkonen, M. (2005). Interference, Information and Performance in Linear Matrix Modulation. In: Ganesh, R., Kota, S.L., Pahlavan, K., Agustí, R. (eds) Emerging Location Aware Broadband Wireless Ad Hoc Networks. Springer, Boston, MA. https://doi.org/10.1007/0-387-23072-6_19

Download citation

  • DOI: https://doi.org/10.1007/0-387-23072-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-23070-2

  • Online ISBN: 978-0-387-23072-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics