Advertisement

Polyhedral Combinatorics

  • Robert D. Carr
  • Goran Konjevod
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 76)

Abstract

Polyhedral combinatorics is a rich mathematical subject motivated by integer and linear programming. While not exhaustive, this survey covers a variety of interesting topics, so let’s get right to it!

Keywords

combinatorial optimization integer programming linear programming polyhedron relaxation separation duality compact optimization projection lifting dynamic programming total dual integrality integrality gap approximation algorithms 

References

  1. [1]
    E. Balas and M. Fischetti. Polyhedral theory for the asymmetric traveling salesman problem. In The traveling salesman problem and its variations, pages 117–168. Kluwer, 2002.Google Scholar
  2. [2]
    D. Bienstock, M. Goemans, D. Simchi-Levi, and David Williamson. A note on the prizecollecting traveling salesman problem. Mathematical Programming, Series A, 59(3):413–420, 1993.MathSciNetCrossRefGoogle Scholar
  3. [3]
    S. Boyd and R. D. Carr. A new bound for the radio between the 2-matching problem and its linear relaxation. Mathematical Programming, Series A, 86(3):499–514, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R. D. Carr, T. Fujito, G. Konjevod, and O. Parekh. A 2 1/10 approximation algorithm for a generalization of the weighted edge-dominating set problem. Journal of Combinatorial Optimization, 5:317–326, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. D. Carr and G. Lancia. Compact vs. exponential-size LP relaxations. Operations Research Letters, 30(1):57–65, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R. D. Carr and S. Vempala. Towards a 4/3-approximation for the asymmetric traveling salesman problem. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 116–125, 2000.Google Scholar
  7. [7]
    V. Chvátal. Linear programming. Freeman, 1983.Google Scholar
  8. [8]
    E. V. Denardo. Dynamic programming: theory and practice. Prentice-Hall, 1978.Google Scholar
  9. [9]
    S. de Vries, M. E. Posner, and R. Vohra. Polyhedral properties of the K-median problem on a tree. No 1367 in Discussion Papers, Northwestern University, Center for Mathematical Studies in Economics and Management Science, 42 pages, 2003.Google Scholar
  10. [10]
    J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards, 71B:233–240, 1967.MathSciNetGoogle Scholar
  11. [11]
    L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ, 1962.zbMATHGoogle Scholar
  12. [12]
    A. M. H. Gerards. Matching. In Network models, volume 7 of Handbooks in Operations Research, pages 135–224. Elsevier, 1995.Google Scholar
  13. [13]
    M. Goemans. Worst-case comparison of valid inequalities for the TSP. Mathematical Programming, 69:335–349, 1995.zbMATHMathSciNetGoogle Scholar
  14. [14]
    M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer Verlag, 1988.Google Scholar
  15. [15]
    M. Grötschel and L. Lovász. Combinatorial optimization. In Handbook of combinatorics, volume 2, pages 1541–1597. Elsevier, 1995.Google Scholar
  16. [16]
    D. S. Hochbaum. Approximating covering and packing problems: set cover, vertex cover, independent set, and related problems. In Approximation algorithms for NP-hard problems, pages 94–143. PWS, 1997.Google Scholar
  17. [17]
    T. Ibaraki. Solvable classes of discrete dynamic programming. Journal of Mathematical Analysis and Applications, 43:642–693, 1973.zbMATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    R. G. Jeroslow. On defining sets of vertices of the hypercube by linear inequalities. Discrete Mathematics, 11:119–124, 1975.zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In Network models, volume 7 of Handbooks in Operations Research, pages 225–329. Elsevier, 1995.Google Scholar
  20. [20]
    V. Kaibel and M. Pfetsch. Some algorithmic problems in polytope theory. In Algebra, Geometry and Software Systems, pages 23–47. Springer Verlag, 2003. arXiv:math.CO/0202204v1.Google Scholar
  21. [21]
    R. M. Karp and M. Held. Finite state processes and dynamic programming. SIAM Journal of Applied Mathematics, 15:693–718, 1967.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Könemann, G. Konjevod, O. Parekh, and A. Sinha. Improved approximation algorithms for tour and tree covers. In Proceedings of APPROX 2000, volume 1913 of Lecture Notes in Computer Science, pages 184–193, 2000.Google Scholar
  23. [23]
    G. Konjevod, R. Ravi, and A. Srinivasan. Approximation algorithms for the covering Steiner problem. Random Structures & Algorithms, 20:465–482, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    B. Korte and J. Vygen. Combinatorial optimization. Theory and algorithms. Springer Verlag, 2000.Google Scholar
  25. [25]
    T. L. Magnanti and L. A. Wolsey. Optimal trees. In Network models, volume 7 of Handbooks in Operations Research, pages 503–615. Elsevier, 1995.Google Scholar
  26. [26]
    R. K. Martin, R. Rardin, and B. A. Campbell. Polyhedral characterizations of discrete dynamic programming. Operations Research, 38(1):127–138, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R. K. Martin. Using separations algorithms to generate mixed integer model reformulations. Operations Research Letters, 10(3):119–128, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  28. [28]
    D. Naddef. Polyhedral theory and branch-and-cut algorithms for the symmetric TSP. In The traveling salesman problem and its variations, pages 29–116. Kluwer, 2002.Google Scholar
  29. [29]
    G. L. Nemhauser and L. E. Trotter. Properties of vertex packing and independence system polyhedra. Mathematical Programming, 6:48–61, 1974.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.Google Scholar
  31. [31]
    C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.Google Scholar
  32. [32]
    O. Parekh. Edge-dominating and hypomatchable sets. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 287–291, 2002.Google Scholar
  33. [33]
    W. R. Pulleyblank. Polyhedral combinatorics. In Optimization, volume 1 of Handbooks in Operations Research, pages 371–446. Elsevier, 1989.Google Scholar
  34. [34]
    W. R. Pulleyblank. Matchings and extensions. In Handbook of combinatorics, volume 1, pages 179–232. Elsevier, 1995.zbMATHMathSciNetGoogle Scholar
  35. [35]
    A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.Google Scholar
  36. [36]
    A. Schrijver. Polyhedral combinatorics. In Handbook of combinatorics, volume 2, pages 1649–1704. Elsevier, 1995.zbMATHMathSciNetGoogle Scholar
  37. [37]
    A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer Verlag, 2003.Google Scholar
  38. [38]
    D. B. Shmoys and D. P. Williamson. Analyzing the Held-Karp TSP bound: a monotonicity property with application. Information Processing Letters, 35:281–285, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    A. Tamir. An O(pn 2) algorithm for the p-median and related problems on tree graphs. Operations Research Letters, 19(2):59–64, 1996.zbMATHMathSciNetCrossRefGoogle Scholar
  40. [40]
    T. Terlaky and S. Zhang. Pivot rules for linear programming: a survey on recent theoretical developments. Annals of Operations Research, 46:203–233, 1993.MathSciNetCrossRefGoogle Scholar
  41. [41]
    V. V. Vazirani. Approximation algorithms. Springer Verlag, 2001.Google Scholar
  42. [42]
    L. A. Wolsey. Heuristic analysis, linear programming and branch and bound. Mathematical Programming Study, 13:121–134, 1980.zbMATHMathSciNetGoogle Scholar
  43. [43]
    M. Yannakakis. Expressing combinatorial optimization problems by linear programs. Journal of Computer and System Sciences, 43(3):441–466, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  44. [44]
    G. Ziegler. Lectures on Polytopes. Springer, 1995.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Robert D. Carr
    • 1
  • Goran Konjevod
    • 2
  1. 1.Discrete Mathematics and Algorithms DepartmentSandia National LaboratoriesUSA
  2. 2.Computer Science and Engineering DepartmentArizona State UniversityUSA

Personalised recommendations