Skip to main content

Pro-Inflammatory Cytokines and Cardiac Extracellular Matrix: Regulation of Fibroblast Phenotype

  • Chapter
Book cover Interstitial Fibrosis in Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 253))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunwald, E., Pathophysiology of Heart Failure. In Heart Disease, Braunwald, E., eds. Philadelphia, PA: WB Saunders Co., (1988): 426–448.

    Google Scholar 

  2. Eghbali, M. and K.T. Weber, Collagen and the myocardium: fibrillar structure, biosynthesis and degradation in relation to hypertrophy and its regression. Mol Cell Biochem, (1990). 96: 1–14.

    Article  PubMed  CAS  Google Scholar 

  3. Swynghedauw, B., Molecular mechanisms of myocardial remodeling. Physiol Rev, (1999). 79: 215–62.

    PubMed  CAS  Google Scholar 

  4. Booz, G.W. and K.M. Baker, Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res, (1995). 30: 537–43.

    Article  PubMed  CAS  Google Scholar 

  5. Eghbali, M., Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol, (1992). 87: S83–9

    Google Scholar 

  6. Friedman, S.L., Stellate cell activation in alcoholic fibrosis—an overview. Alcohol Clin Exp Res, (1999). 23: 904–10.

    PubMed  CAS  Google Scholar 

  7. Kupper, T.S. and R.W. Groves, The IL-1 axis and cutaneous inflammation. J Invest Dermatol, (1995). 105: S62S–66.

    Article  Google Scholar 

  8. Weber, K.T., Fibrosis, a common pathway to organ failure: angiotensin II and tissue repair. Semin Nephrol, (1997). 17: 467–91.

    PubMed  CAS  Google Scholar 

  9. Sime, P.J., et al., Transfer of tumor necrosis factor-alpha to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-beta1 and myofibroblasts. Am J Pathol, (1998). 153: 825–32.

    PubMed  CAS  Google Scholar 

  10. Zalewski, A. and Y. Shi, Vascular myofibroblasts. Lessons from coronary repair and remodeling. Arterioscler Thromb Vasc Biol, (1997). 17: 417–22.

    PubMed  CAS  Google Scholar 

  11. Davidson, JM., Wound Repair. In: Inflammation: Basic Principles and Clinical Correlates. Gallin JI, Goldstein RH, Snyderman R,eds. New York,NY: Raven Press, Ltd., (1992): 809–819.

    Google Scholar 

  12. Weber, K.T., Y. Sun, and L.C. Katwa, Wound healing following myocardial infarction. Clin Cardiol, 1996. 19: p. 447–55.

    Article  PubMed  CAS  Google Scholar 

  13. Hill, C.S. and R. Treisman, Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell, 1995. 80: p. 199–211.

    Article  PubMed  CAS  ISI  Google Scholar 

  14. Manning, A. and Rao A. Agents Targeting Transcription. In: Inflammation Basic Principles and Clinical Correlates. Gallin JI, Snyderman R, eds. Philadelphia, PA: Lippincott Williams & Wilkins, 1999: p. 1159–1176.

    Google Scholar 

  15. Boehm, U., et al., Cellular responses to interferon-gamma. Annu Rev Immunol, 1997. 15: p. 749–95.

    Article  PubMed  CAS  Google Scholar 

  16. Dinarello, C.A., Biologic basis for IL-1 in disease. Blood, 1996. 87: p. 2095–147.

    PubMed  CAS  ISI  Google Scholar 

  17. Heinrich, P.C., et al., Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J, 1998. 334: p. 297–314.

    PubMed  CAS  Google Scholar 

  18. Ledgerwood, E.C., J.S. Pober, and J.R. Bradley, Recent advances in the molecular basis of TNF signal transduction. Lab Invest, 1999. 79: p. 1041–50.

    PubMed  CAS  Google Scholar 

  19. Leong, K.G. and A. Karsan, Signaling pathways mediated by tumor necrosis factor alpha. Histol Histopathol, 2000. 15: p. 1303–25.

    PubMed  CAS  Google Scholar 

  20. O’Neill, L. A. and C. Greene, Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. J Leukoc Biol, 1998. 63: p. 650–7.

    PubMed  Google Scholar 

  21. Roberts, A.B., TGF-beta signaling from receptors to the nucleus. Microbes Infect, 1999. 1: p. 1265–73.

    Article  PubMed  CAS  Google Scholar 

  22. Tilg, H., C.A. Dinarello, and J.W. Mier, IL-6 and APPs: anti-inflammatory and immunosuppressive mediators. Immunol Today, 1997. 18(9): p. 428–32.

    Article  PubMed  CAS  Google Scholar 

  23. Branton, M.H. and J.B. Kopp, TGF-beta and fibrosis. Microbes Infect, 1999. 1:p. 1349–65.

    Article  PubMed  CAS  Google Scholar 

  24. Lange, L. and G F. Schreiner, Immune cytokines and cardiac disease. Trends Cardiovasc Med, 1992. 2: p. 145–151.

    Article  CAS  Google Scholar 

  25. Li, D. and S.L. Friedman, Liver fibrogenesis and the role of hepatic stellate cells: new insights and prospects for therapy. J Gastroenterol Hepatol, 1999. 14: p. 618–33.

    Article  PubMed  CAS  Google Scholar 

  26. Seta, Y., et al., Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail, 1996. 2: p. 243–9.

    PubMed  CAS  Google Scholar 

  27. Lopez, F. and S. Casado, Heart failure, redox alterations, and endothelial dysfunction. Hypertension, 2001. 38: p. 1400–1405.

    Google Scholar 

  28. Frangogiannis, N.G., C.W. Smith, and M.L. Entman, The inflammatory response in myocardial infarction. Cardiovasc Res, 2002. 53: p. 31–47.

    Article  PubMed  CAS  Google Scholar 

  29. Niebauer, J., Inflammatory mediators in heart failure. Int J Cardiol, 2000. 72: p. 209–13.

    Article  PubMed  CAS  Google Scholar 

  30. Sharma, R., A.J. Coats, and S.D. Anker, The role of inflammatory mediators in chronic heart failure: cytokines, nitric oxide, and endothelin-1. Int J Cardiol, 2000. 72: p. 175–86.

    Article  PubMed  CAS  Google Scholar 

  31. Levine, B., et al., Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med, 1990. 323: p. 236–41.

    PubMed  CAS  Google Scholar 

  32. Torre-Amione, G., et al., Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol, 1996, 27: p. 1201–6.

    Article  PubMed  CAS  Google Scholar 

  33. Conraads, V.M., J.M. Bosmans, and C.J. Vrints, Chronic heart failure: an example of a systemic chronic inflammatory disease resulting in cachexia. Int J Cardiol, 2002. 85: p. 33–49.

    Article  PubMed  Google Scholar 

  34. Deswal, A., et al., Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation, 2001. 103: p. 2055–9.

    PubMed  CAS  ISI  Google Scholar 

  35. Rauchhaus, M., et al., Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation, 2000. 102: p. 3060–7.

    PubMed  CAS  ISI  Google Scholar 

  36. Testa, M., et al., Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol, 1996. 28: p. 964–971.

    Article  PubMed  CAS  Google Scholar 

  37. Long, C.S., The role of IL-1 in the failing heart. Heart Fail Rev, 2001. 6: p. 81–94.

    PubMed  CAS  Google Scholar 

  38. Paulus, W. J., How are cytokines activated in heart failure? Eur J Heart Fail, 1999. 1: p. 309–12.

    PubMed  CAS  Google Scholar 

  39. Torre-Amione, G., et al., Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation, 1996. 93: p. 704–11.

    PubMed  CAS  Google Scholar 

  40. Mohler, E.R., 3rd, et al., Role of cytokines in the mechanism of action of amlodipine: the PRAISE Heart Failure Trial. Prospective Randomized Amlodipine Survival Evaluation. J Am Coll Cardiol, 1997. 30: p. 35–41.

    PubMed  CAS  Google Scholar 

  41. Ohtsuka, T., et al., Effect of beta-blockers on circulating levels of inflammatory and anti-inflammatory cytokines in patients with dilated cardiomyopathy. J Am Coll Cardiol, 2001. 37: p. 412–7.

    Article  PubMed  CAS  Google Scholar 

  42. Gullestad, L., et al., Effect of high-versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J Am Coll Cardiol, 1999. 34: p. 2061–7.

    Article  PubMed  CAS  Google Scholar 

  43. Tsutamoto, T., et al., Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol, 2000. 35: p. 714–21.

    Article  PubMed  CAS  Google Scholar 

  44. Matsumori, A., et al., Vesnarinone, a new inotropic agent, inhibits cytokine production by stimulated human blood from patients with heart failure. Circulation, 1994. 89: p. 955–8.

    PubMed  CAS  ISI  Google Scholar 

  45. Prabhu, S.D., et al., beta-Adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation, 2000. 101: p. 2103–9.

    PubMed  CAS  ISI  Google Scholar 

  46. Torre-Amione, G., et al., Decreased expression of tumor necrosis factor-alpha in failing human myocardium after mechanical circulatory support: A potential mechanism for cardiac recovery. Circulation, 1999. 100: p. 1189–93.

    PubMed  CAS  ISI  Google Scholar 

  47. Feldman, A.M., et al., The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol, 2000. 35: p. 537–44.

    PubMed  CAS  Google Scholar 

  48. Suffredini, A.F., et al., The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med, 1989. 321: p. 280–7.

    Article  PubMed  CAS  Google Scholar 

  49. Yokoyama, T., et al., Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest, 1993. 92: p. 2303–12.

    PubMed  CAS  Google Scholar 

  50. Guillen, I., et al., Cytokine signaling during myocardial infarction: sequential appearance of IL-1 beta and IL-6. Am J Physiol, 1995. 269: p. R229–35.

    PubMed  CAS  Google Scholar 

  51. Herskowitz, A., et al., Cytokine mRNA expression in postischemic/reperfused myocardium. Am J Pathol, 1995. 146: p. 419–28.

    PubMed  CAS  Google Scholar 

  52. Yokoyama, T., et al., Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation, 1997. 95: p. 1247–52.

    PubMed  CAS  ISI  Google Scholar 

  53. Bradham, W.S., et al., Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: a current perspective. Cardiovasc Res, 2002. 53: p. 822–30.

    Article  PubMed  CAS  Google Scholar 

  54. Bozkurt, B., et al., Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation, 1998. 97: p. 1382–91.

    PubMed  CAS  ISI  Google Scholar 

  55. Sivasubramanian, N., et al., Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation, 2001. 104: p. 826–31.

    PubMed  CAS  ISI  Google Scholar 

  56. Kubota, T., et al., Soluble tumor necrosis factor receptor abrogates myocardial inflammation but not hypertrophy in cytokine-induced cardiomyopathy. Circulation, 2000. 101: p. 2518–25.

    PubMed  CAS  ISI  Google Scholar 

  57. Li, Y.Y., et al., Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA, 2000. 97: p. 12746–51.

    PubMed  CAS  Google Scholar 

  58. Li, Y.Y., et al., MMP inhibition modulates TNF-alpha transgenic mouse phenotype early in the development of heart failure. Am J Physiol, 2002. 282: p. H983–9.

    CAS  Google Scholar 

  59. Cleutjens, J.P., et al., Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol, 1995. 27: p. 1281–92.

    Article  PubMed  CAS  Google Scholar 

  60. Takahashi, S., A.C. Barry, and S.M. Factor, Collagen degradation in ischaemic rat hearts. Biochem J, 1990. 265: p. 233–41.

    PubMed  CAS  Google Scholar 

  61. Sun, Y. and K.T. Weber, Infarct scar: a dynamic tissue. Cardiovasc Res, 2000. 46: p. 250–6.

    Article  PubMed  CAS  Google Scholar 

  62. Yue, P., et al., Cytokine expression increases in nonmyocytes from rats with postinfarction heart failure. Am J Physiol, 1998. 275: p. H250–8.

    PubMed  CAS  Google Scholar 

  63. Eghbali, M., et al., Collagen chain mRNAs in isolated heart cells from young and adult rats. J Mol Cell Cardiol, 1988. 20: p. 267–76.

    Article  PubMed  CAS  Google Scholar 

  64. Postlethwaite, A.E. and Kang, A.H., Fibroblasts and Matrix Proteins. In: Basic Principles and Clinical Correlates., Gallin, J.I., Snyderman R., eds. Philadelphia, PA: Lippincott Williams & Wilkins, 1999: p.227–257.

    Google Scholar 

  65. Powell, D.W., et al., Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am J Physiol, 1999. 277: p. C183–201.

    PubMed  CAS  Google Scholar 

  66. Sappino, A.P., W. Schurch, and G. Gabbiani, Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest, 1990. 63: p. 144–61.

    PubMed  CAS  Google Scholar 

  67. Heckmann, M., et al., Biphasic effects of interleukin-1 alpha on dermal fibroblasts: enhancement of chemotactic responsiveness at low concentrations and of mRNA expression for collagenase at high concentrations. J Invest Dermatol, 1993. 100: p. 780–4.

    Article  PubMed  CAS  Google Scholar 

  68. Kawaguchi, Y., M. Hara, and T.M. Wright, Endogenous IL-1alpha from systemic sclerosis fibroblasts induces IL-6 and PDGF-A. J Clin Invest, 1999. 103: p. 1253–60.

    PubMed  CAS  Google Scholar 

  69. Mauviel, A., et al., Uncoordinate regulation of collagenase, stromelysin, and tissue inhibitor of metalloproteinases genes by prostaglandin E2: selective enhancement of collagenase gene expression in human dermal fibroblasts in culture. J Cell Biochem, 1994. 54: p. 465–72.

    Article  PubMed  CAS  Google Scholar 

  70. Moon, S.E., et al., Induction of matrix metalloproteinase-1 (MMP-1) during epidermal invasion of the stroma in human skin organ culture: keratinocyte stimulation of fibroblast MMP-1 production. Br J Cancer, 2001. 85: p. 1600–5.

    Article  PubMed  CAS  Google Scholar 

  71. Kumkumian, G.K., et al., Platelet-derived growth factor and IL-1 interactions in rheumatoid arthritis. Regulation of synoviocyte proliferation, prostaglandin production, and collagenase transcription. J Immunol, 1989. 143: p. 833–7.

    PubMed  CAS  Google Scholar 

  72. Wang, A.Z., et al., Improved in vitro models for assay of rheumatoid synoviocyte chemotaxis. Clin Exp Rheumatol, 1994. 12: p.293–9.

    PubMed  CAS  Google Scholar 

  73. Barchowsky, A., D. Frleta, and M.P. Vincenti, Integration of the NF-kappaB and mitogen-activated protein kinase/AP-1 pathways at the collagenase-1 promoter: divergence of IL-1 and TNF-dependent signal transduction in rabbit primary synovial fibroblasts. Cytokine, 2000. 12: p. 1469–79.

    Article  PubMed  CAS  ISI  Google Scholar 

  74. Goldring, M.B. and S.M. Krane, Modulation by recombinant interleukin 1 of synthesis of types I and III collagens and associated procollagen mRNA levels in cultured human cells. J Biol Chem, 1987. 262: p. 16724–9.

    PubMed  CAS  Google Scholar 

  75. Ito, A., et al., Effects of interleukin-6 on the metabolism of connective tissue components in rheumatoid synovial fibroblasts. Arthritis Rheum, 1992.35: p. 1197–201.

    PubMed  CAS  Google Scholar 

  76. Rinaldi, N., et al., Loss of collagen type IV in rheumatoid synovia and cytokine effect on the collagen type-IV gene expression in fibroblast-like synoviocytes from rheumatoid arthritis. Virchows Arch, 2001. 439: p. 675–82.

    PubMed  CAS  ISI  Google Scholar 

  77. Elias, J.A., et al., Cytokine networks in the regulation of inflammation and fibrosis in the lung. Chest, 1990. 97: p. 1439–45.

    PubMed  CAS  ISI  Google Scholar 

  78. MacFarlane, D.J., C.M. O’Connor, and M.X. Fitzgerald, Collagen production in human lung fibroblasts in response to cytokines. Biochem Soc Trans, 1994. 22: p. 49S.

    PubMed  CAS  Google Scholar 

  79. Sasaki, M., et al., Differential regulation of metalloproteinase production, proliferation and chemotaxis of human lung fibroblasts by PDGF, interleukin-1 beta and TNF-alpha. Mediators Inflamm, 2000. 9: p. 155–60.

    PubMed  CAS  Google Scholar 

  80. Tsukamoto, H., Cytokine regulation of hepatic stellate cells in liver fibrosis. Alcohol Clin Exp Res, 1999. 23: p. 911–6.

    PubMed  CAS  Google Scholar 

  81. Toda, K., et al., Induction of hepatic stellate cell proliferation by LPS-stimulated peripheral blood mononuclear cells from patients with liver cirrhosis. J Gastroenterol, 2000. 35: p. 214–20.

    PubMed  CAS  Google Scholar 

  82. Tiggelman, A.M., et al., Collagen synthesis by human liver (myo)fibroblasts in culture: evidence for a regulatory role of IL-1 beta, IL-4, TGF beta and IFN gamma. J Hepatol, 1995. 23: p. 307–17.

    PubMed  CAS  Google Scholar 

  83. Matsuoka, M., N.T. Pham, and H. Tsukamoto, Differential effects of interleukin-1 alpha, tumor necrosis factor alpha, and transforming growth factor beta 1 on cell proliferation and collagen formation by cultured fat-storing cells. Liver, 1989. 9: p. 71–8.

    PubMed  CAS  ISI  Google Scholar 

  84. Quinones, S., G. Buttice, and M. Kurkinen, Promoter elements in the transcriptional activation of the human stromelysin-1 gene by the inflammatory cytokine, interleukin 1. Biochem J, 1994. 302: p. 471–7.

    PubMed  CAS  Google Scholar 

  85. Lin, N., T. Sato, and A. Ito, Triptolide, a novel diterpenoid triepoxide from Tripterygium wilfordii Hook. f., suppresses the production and gene expression of pro-matrix metalloproteinases 1 and 3 and augments those of tissue inhibitors of metalloproteinases 1 and 2 in human synovial fibroblasts. Arthritis Rheum, 2001. 44: p. 2193–200.

    Article  PubMed  CAS  Google Scholar 

  86. Medina, L., et al., Leukotriene C4 upregulates collagenase expression and synthesis in human lung fibroblasts. Biochim Biophys Acta, 1994. 1224: p. 168–74.

    PubMed  CAS  Google Scholar 

  87. Lilli, C., et al., Effects of transforming growth factor-betal and tumour necrosis factor-alpha on cultured fibroblasts from skin fibroma as modulated by toremifene. Int J Cancer, 2002. 98: p. 824–32.

    Article  PubMed  CAS  Google Scholar 

  88. Postlethwaite, A.E. and J.M. Seyer, Stimulation of fibroblast chemotaxis by human recombinant tumor necrosis factor alpha (TNF-alpha) and a synthetic TNF-alpha 31-68 peptide. J Exp Med, 1990. 172: p. 1749–56.

    Article  PubMed  CAS  Google Scholar 

  89. Taniguchi, S., et al., Butylated hydroxyanisole blocks the inhibitory effects of tumor necrosis factor-alpha on collagen production in human dermal fibroblasts. J Dermatol Sci, 1996. 12: p. 44–9.

    Article  PubMed  CAS  Google Scholar 

  90. Han, Y.P., Y.D. Nien, and W.L. Garner, Tumor necrosis factor-alpha-induced proteolytic activation of pro-matrix metalloproteinase-9 by human skin is controlled by down-regulating tissue inhibitor of metalloproteinase-1 and mediated by tissue-associated chymotrypsin-like proteinase. J Biol Chem, 2002. 277: p. 27319–27.

    PubMed  CAS  Google Scholar 

  91. Reunanen, N., et al., Activation of p38 alpha MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem, 2002. 277: p. 32360–8.

    Article  PubMed  CAS  Google Scholar 

  92. Volin, M.V., et at., RANTES expression and contribution to monocyte chemotaxis in arthritis. Clin Immunol Immunopathol, 1998. 89: p.44–53.

    Article  PubMed  CAS  Google Scholar 

  93. Youn, J., et al., Regulation of TNF-alpha-mediated hyperplasia through TNF receptors, TRAFs, and NF-kappaB in synoviocytes obtained from patients with rheumatoid arthritis. Immunol Lett, 2002. 83: p. 85–93.

    Article  PubMed  CAS  Google Scholar 

  94. Konttinen, Y.T., et al., Collagenase-3 (MMP-13) and its activators in rheumatoid arthritis: localization in the pannus-hard tissue junction and inhibition by alendronate. Matrix Biol, 1999. 18: p. 401–12.

    Article  PubMed  CAS  ISI  Google Scholar 

  95. Sun, H.B. and H. Yokota, Reduction of cytokine-induced expression and activity of MMP-1 and MMP-13 by mechanical strain in MH7A rheumatoid synovial cells. Matrix Biol, 2002. 21: p. 263–70.

    Article  PubMed  CAS  ISI  Google Scholar 

  96. Jenkins, J.K., K.J. Hardy, and R.W. McMurray, The pathogenesis of rheumatoid arthritis: a guide to therapy. Am J Med Sci, 2002. 323: p. 171–80.

    PubMed  Google Scholar 

  97. Joosten, L.A., et al., Protection against cartilage and bone destruction by systemic interleukin-4 treatment in established murine type II collagen-induced arthritis. Arthritis Res, 1999. 1: p. 81–91.

    Article  PubMed  CAS  Google Scholar 

  98. Elias, J.A., Tumor necrosis factor interacts with interleukin-1 and interferons to inhibit fibroblast proliferation via fibroblast prostaglandin-dependent and-independent mechanisms. Am Rev Respir Dis, 1988. 138: p. 652–8.

    PubMed  CAS  Google Scholar 

  99. Tufvesson, E. and G. Westergren-Thorsson, Alteration of proteoglycan synthesis in human lung fibroblasts induced by interleukin-1 beta and tumor necrosis factor-alpha. J Cell Biochem, 2000. 77: p. 298–309.

    Article  PubMed  CAS  Google Scholar 

  100. Spoelstra, F.M., et al., Interferon-gamma and interleukin-4 differentially regulate ICAM-1 and VCAM-1 expression on human lung fibroblasts. Eur Respir J, 1999. 14: p. 759–66.

    Article  PubMed  CAS  Google Scholar 

  101. Kolb, M., et al., Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest, 2001. 107: p. 1529–36.

    PubMed  CAS  Google Scholar 

  102. Yang, M, and M. Kurkinen, Different mechanisms of regulation of the human stromelysin and collagenase genes. Analysis by a reverse-transcription-coupled-PCR assay. Eur J Biochem, 1994. 222: p. 651–8.

    Article  PubMed  CAS  Google Scholar 

  103. Bienkowski, R.S. and M.G. Gotkin, Control of collagen deposition in mammalian lung. Proc Soc Exp Biol Med, 1995. 209: p. 118–40.

    PubMed  CAS  Google Scholar 

  104. Bachem, M.G., et al., Tumor necrosis factor alpha (TNF alpha) and transforming growth factor beta 1 (TGF beta 1) stimulate fibronectin synthesis and the transdifferentiation of fat-storing cells in the rat liver into myofibroblasts. Virchows Arch B Cell Pathol Incl Mol Pathol, 1993. 63: p. 123–30.

    Article  PubMed  CAS  Google Scholar 

  105. Diehl, A.M. and R. Rai, Review: regulation of liver regeneration by pro-inflammatory cytokines. J Gastroenterol Hepatol, 1996. 11: p. 466–70.

    PubMed  CAS  Google Scholar 

  106. Gallois, C., et al., Role of NF-kappaB in the antiproliferative effect of endothelin-1 and tumor necrosis factor-alpha in human hepatic stellate cells. Involvement of cyclooxygenase-2. J Biol Chem, 1998. 273: p. 23183–90.

    Article  PubMed  CAS  Google Scholar 

  107. Knittel, T., et al., Effect of tumour necrosis factor-alpha on proliferation, activation and protein synthesis of rat hepatic stellate cells. J Hepatol, 1997. 27: p. 1067–80.

    Article  PubMed  CAS  Google Scholar 

  108. Armendariz-Borunda, J., K. Katayama, and J.M. Seyer, Transcriptional mechanisms of type I collagen gene expression are differentially regulated by interleukin-1 beta, tumor necrosis factor alpha, and transforming growth factor beta in Ito cells. J Biol Chem, 1992. 267: p. 14316–21.

    PubMed  CAS  Google Scholar 

  109. Knittel, T., et al., Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta1. J Hepatol, 1999. 30: p. 48–60.

    Article  PubMed  CAS  Google Scholar 

  110. Poulos, J.E., et al., Fibronectin and cytokines increase JNK, ERK, AP-1 activity, and transin gene expression in rat hepatic stellate cells. Am J Physiol, 1997. 273: p. G804–11.

    PubMed  CAS  Google Scholar 

  111. Knittel, T., et al., Expression and regulation of cell adhesion molecules by hepatic stellate cells (HSC) of rat liver: involvement of HSC in recruitment of inflammatory cells during hepatic tissue repair. Am J Pathol, 1999. 154: p. 153–67.

    PubMed  CAS  Google Scholar 

  112. Alvaro-Gracia, J.M., et al., Mutual antagonism between interferon-gamma and tumor necrosis factor-alpha on fibroblast-like synoviocytes: paradoxical induction of IFN-gamma and TNF-alpha receptor expression. J Clin Immunol, 1993. 13: p. 212–8.

    Article  PubMed  CAS  Google Scholar 

  113. Brinckerhoff, C.E. and P.M. Guyre, Increased proliferation of human synovial fibroblasts treated with recombinant immune interferon. J Immunol, 1985. 134: p. 3142–6.

    PubMed  CAS  Google Scholar 

  114. Hein, R., et al., Treatment of systemic sclerosis with gamma-interferon. Br J Dermatol, 1992. 126: p. 496–501.

    PubMed  CAS  Google Scholar 

  115. Lukacs, N.W., et al., Type 1/type 2 cytokine paradigm and the progression of pulmonary fibrosis. Chest, 2001. 120: p. 5S–8S.

    Article  PubMed  CAS  ISI  Google Scholar 

  116. Amento, E.P., et al., Influences of gamma interferon on synovial fibroblast-like cells. Induction and inhibition of collagen synthesis. J Clin Invest, 1985. 76: p. 837–48.

    PubMed  CAS  Google Scholar 

  117. Ghosh, A.K., et al., Antagonistic regulation of type I collagen gene expression by interferon-gamma and transforming growth factor-beta. Integration at the level of p300/CBP transcriptional coactivators. J Biol Chem, 2001. 276: p. 11041–8.

    PubMed  CAS  Google Scholar 

  118. Maguire, M.C., C.M. O’Connor, and M.X. Fitzgerald, Type I and type III collagen mRNA expression in human lung fibroblasts. Biochem Soc Trans, 1994. 22: p. 51S.

    PubMed  CAS  Google Scholar 

  119. Harvat, B.L. and A.M. Jetten, Decreased growth inhibitory responses of squamous carcinoma cells to interferon-gamma involve failure to recruit cki proteins into cdk2 complexes. J Invest Dermatol, 2001. 117: p. 1274–81.

    Article  PubMed  CAS  Google Scholar 

  120. Varga, J., et al., Control of extracellular matrix degradation by interferon-gamma. The tryptophan connection. Adv Exp Med Biol, 1996. 398: p. 143–8.

    PubMed  CAS  Google Scholar 

  121. Unemori, E.N., et al., Stromelysin expression regulates collagenase activation in human fibroblasts. Dissociable control of two metalloproteinases by interferon-gamma. J Biol Chem, 1991. 266: p. 23477–82.

    PubMed  CAS  Google Scholar 

  122. Mihara, M., Y. Moriya, and Y. Ohsugi, IL-6-soluble IL-6 receptor complex inhibits the proliferation of dermal fibroblasts. Int J Immunopharmacol, 1996. 18: p. 89–94.

    Article  PubMed  CAS  Google Scholar 

  123. Mihara, M., et al., Interleukin-6 (IL-6) induces the proliferation of synovial fibroblastic cells in the presence of soluble IL-6 receptor. Br J Rheumatol, 1995. 34: p. 321–5.

    PubMed  CAS  Google Scholar 

  124. Scaffidi, A.K., et al., Oncostatin M stimulates proliferation, induces collagen production and inhibits apoptosis of human lung fibroblasts. Br J Pharmacol, 2002. 136: p. 793–801.

    Article  PubMed  CAS  Google Scholar 

  125. Kossakowska, A.E., et al., Interleukin-6 regulation of matrix metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin’s lymphomas. Blood, 1999. 94: p. 2080–9.

    PubMed  CAS  ISI  Google Scholar 

  126. Solis-Herruzo, J.A., et al., Interleukin-6 increases rat metalloproteinase-13 gene expression through stimulation of activator protein 1 transcription factor in cultured fibroblasts. J Biol Chem, 1999. 274: p. 30919–26.

    Article  PubMed  CAS  Google Scholar 

  127. Brenneisen, P., et al., Ultraviolet-B induction of interstitial collagenase and stromelyin-1 occurs in human dermal fibroblasts via an autocrine interleukin-6-dependent loop. FEBS Lett, 1999. 449: p. 36–40.

    Article  PubMed  CAS  ISI  Google Scholar 

  128. Duncan, M.R. and B. Berman, Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin 6. J Invest Dermatol, 1991. 97: p. 686–92.

    Article  PubMed  CAS  Google Scholar 

  129. Sato, T., A. Ito, and Y. Mori, Interleukin 6 enhances the production of tissue inhibitor of metalloproteinases (TIMP) but not that of matrix metalloproteinases by human fibroblasts. Biochem Biophys Res Commun, 1990. 170: p. 824–9.

    PubMed  CAS  Google Scholar 

  130. Richards, C.D., et al., Selective regulation of metalloproteinase inhibitor (TIMP-1) by oncostatin M in fibroblasts in culture. J Immunol, 1993. 150: p. 5596–603.

    PubMed  CAS  Google Scholar 

  131. Silacci, P., et al., Interleukin (IL)-6 and its soluble receptor induce TIMP-1 expression in synoviocytes and chondrocytes, and block IL-1-induced collagenolytic activity. J Biol Chem, 1998. 273: p. 13625–9.

    Article  PubMed  CAS  Google Scholar 

  132. Lang, D.S., H. Schocker, and S. Hockertz, Effects of crocidolite asbestos on human bronchoepithelial-dependent fibroblast stimulation in coculture: the role of IL-6 and GM-CSF. Toxicology, 2001. 159: p. 81–98.

    Article  PubMed  CAS  ISI  Google Scholar 

  133. Kahler, C.M., et al., Influence of neuropeptides on neutrophil adhesion and transmigration through a lung fibroblast barrier in vitro. Exp Lung Res, 2001. 27: p. 25–46.

    Article  PubMed  CAS  Google Scholar 

  134. Long, C.S., C.J. Henrich, and P.C. Simpson, A growth factor for cardiac myocytes is produced by cardiac nonmyocytes. Cell Regul, 1991. 2: p. 1081–95.

    PubMed  CAS  ISI  Google Scholar 

  135. Palmer, J.N., et al., Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest, 1995. 95: p. 2555–64.

    PubMed  CAS  Google Scholar 

  136. Koudssi, F., et al., Cardiac fibroblasts arrest at the G1/S restriction point in response to interleukin (IL)-1beta. Evidence for IL-1 beta-induced hypophosphorylation of the retinoblastoma protein. J Biol Chem, 1998. 273: p. 25796–803.

    Article  PubMed  CAS  Google Scholar 

  137. Long, C.S., W.E. Hartogensis, and P.C. Simpson, Beta-adrenergic stimulation of cardiac non-myocytes augments the growth-promoting activity of non-myocyte conditioned medium. J Mol Cell Cardiol, 1993. 25: p. 915–25.

    Article  PubMed  CAS  Google Scholar 

  138. Kacimi, R., et al., Expression and regulation of adhesion molecules in cardiac cells by cytokines: response to acute hypoxia. Circ Res, 1998. 82: p. 576–86.

    PubMed  CAS  Google Scholar 

  139. Peterkofsky, B. and R. Diegelmann, Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry, 1971. 10: p. 988–94.

    PubMed  CAS  ISI  Google Scholar 

  140. Siwik, D.A., D.L. Chang, and W.S. Colucci, Interleukin-1 beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res, 2000. 86: p. 1259–65.

    PubMed  CAS  Google Scholar 

  141. Sano, I., et al., OPC-8212, a quinoline derivative, counteracts the reduction in type III collagen mRNA due to lipopolysaccharides in cultured rat cardiac fibroblasts. Jpn Heart J, 2001. 242: p. 125–34.

    Google Scholar 

  142. Grimm, D., et al., Extracellular matrix proteins in cardiac fibroblasts derived from rat hearts with chronic pressure overload: effects of beta-receptor blockade. J Mol Cell Cardiol, 2001. 33: p. 487–501.

    Article  PubMed  CAS  Google Scholar 

  143. Lijnen, P. and V. Petrov, Antagonism of the renin-angiotensin-aldosterone system and collagen metabolism in cardiac fibroblasts. Methods Find Exp Clin Pharmacol, 1999. 21: p. 363–74.

    PubMed  CAS  Google Scholar 

  144. Gray, M.O., et al., Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res, 1998. 40: p. 352–63.

    Article  PubMed  CAS  Google Scholar 

  145. Long, C.S., Autocrine and paracrine regulation of myocardial cell growth in vitro. The TGF-beta paradigm. Trends Cardiovasc Med, 1996. 6: p. 217–226.

    Article  CAS  Google Scholar 

  146. Frank, S., M. Madlener, and S. Werner, Transforming growth factors beta1, beta2, and beta3 and their receptors are differentially regulated during normal and impaired wound healing. J Biol Chem, 1996. 27: p. 10188–93.

    Google Scholar 

  147. Shah, M., D.M. Foreman, and M.W. Ferguson, Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci, 1995. 108: p. 985–1002.

    PubMed  CAS  Google Scholar 

  148. Roberts, R., V. DeMello, and B.E. Sobel, Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation, 1976. 53: p. S204–6.

    Google Scholar 

  149. Mason, J.W., et al., A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N Engl J Med, 1995. 333: p. 269–75.

    Article  PubMed  CAS  Google Scholar 

  150. Kurrelmeyer, K.M., et al., Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci U S A, 2000. 97: p. 5456–61.

    Article  PubMed  CAS  Google Scholar 

  151. Lasky, J. A. and L. A. Ortiz, Antifibrotic therapy for the treatment of pulmonary fibrosis. Am J Med Sci, 2001. 322: p. 213–21.

    PubMed  CAS  Google Scholar 

  152. Oldroyd, S.D., et al., Interferon-gamma inhibits experimental renal fibrosis. Kidney Int, 1999. 56: p. 2116–27.

    Article  PubMed  CAS  ISI  Google Scholar 

  153. Ducharme, A., et al., Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest, 2000. 106: p. 55–62.

    Article  PubMed  CAS  Google Scholar 

  154. Heymans, S., et al., Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med, 1999. 5: p. 1135–42.

    PubMed  CAS  Google Scholar 

  155. Peterson, J.T., et al., Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation, 2001. 103: p. 2303–9.

    PubMed  CAS  ISI  Google Scholar 

  156. Rohde, L.E., et al., Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation, 1999. 99: p. 3063–70.

    PubMed  CAS  ISI  Google Scholar 

  157. Spinale, F.G., et al., Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res, 1999. 85: p. 364–76.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Brown, R.D., Mitchell, M.D., Long, C.S. (2005). Pro-Inflammatory Cytokines and Cardiac Extracellular Matrix: Regulation of Fibroblast Phenotype. In: Villarreal, F.J. (eds) Interstitial Fibrosis in Heart Failure. Developments in Cardiovascular Medicine, vol 253. Springer, New York, NY. https://doi.org/10.1007/0-387-22825-X_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-22825-X_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22824-2

  • Online ISBN: 978-0-387-22825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics