Skip to main content

Therapeutic Potential of TIMPs in Heart Failure

  • Chapter
  • 687 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 253))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tyagi, S.C., Proteinases and myocardial extracellular matrix turnover. Mol Cell Biochem, 1997. 168: p. 1–12.

    Article  PubMed  CAS  Google Scholar 

  2. Loechel, F., et al., Human ADAM 12 (meltrin alpha) is an active metalloprotease. J Biol Chem, 1998. 273: p. 16993–7.

    Article  PubMed  CAS  Google Scholar 

  3. Hayden, M.R. and S.C. Tyagi, Arteriogenesis: Angiogenesis within Unstable AtheroscleroticPlaque— Interactions with Extracellular Matrix. Curr Interv Cardiol Rep, 2000. 2: p. 218–227.

    PubMed  Google Scholar 

  4. Tyagi, S., Dynamic role of extracellular matrix metalloproteinases in heart failure. Cardiovasc Pathol, 1998. 7: p. 153–159.

    Article  CAS  Google Scholar 

  5. Brew, K., D. Dinakarpandian, and H. Nagase, Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta, 2000. 1477: p. 267–83.

    PubMed  CAS  Google Scholar 

  6. Nagase, H. and Woessner, J.F., Matrix metalloproteinase. J Biol Chem, 1999. 274: p. 21491–21494.

    Article  PubMed  CAS  Google Scholar 

  7. Mujumdar, V.S., G.M. Aru, and S.C. Tyagi, Induction of oxidative stress by homocyst(e)ine impairs endothelial function. J Cell Biochem, 2001. 82: p. 491–500.

    Article  PubMed  CAS  Google Scholar 

  8. Miller, A., et al., Reversal of endocardial endothelial dysfunction by folic acid in homocysteinemic hypertensive rats. Am J Hypertens, 2002. 15: p. 157–63.

    Article  PubMed  CAS  Google Scholar 

  9. Michel, J.B., et al., Morphometric analysis of collagen network and plasma perfused capillary bed in the myocardium of rats during evolution of cardiac hypertrophy. Basic Res Cardiol, 1986. 81: p. 142–54.

    Article  PubMed  CAS  Google Scholar 

  10. Amann, K., et al., Myocyte/capillary mismatch in the heart of uremic patients. J Am Soc Nephrol, 1998. 9: p. 1018–22.

    PubMed  CAS  Google Scholar 

  11. Miller, A., et al., Hyperhomocysteinemia induces multiorgan damage. Heart & Vessels, 2000. 15: p. 135–143.

    CAS  Google Scholar 

  12. Patel, R., et al., Simavastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation, 2001. 104: p. 317–324.

    PubMed  CAS  ISI  Google Scholar 

  13. Capasso, J.M., T.F. Robinson, and P. Anversa, Alterations in collagen cross-linking impair myocardial contractility in the mouse heart. Circ Res, 1989. 65: p. 1657–64.

    PubMed  CAS  Google Scholar 

  14. Matsubara, L.S., et al., Alterations in myocardial collagen content affect rat papillary muscle function. Am J Physiol, 2000. 279: p. H1534–9.

    CAS  Google Scholar 

  15. Aimes, R.T. and J.P. Quigley, Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4-and 1/4-length fragments. J Biol Chem, 1995. 270: p. 5872–6.

    PubMed  CAS  Google Scholar 

  16. Senior, R.M., et al., Human 92-and 72-kilodalton type IV collagenases are elastases. J Biol Chem, 1991. 266: p. 7870–5.

    PubMed  CAS  Google Scholar 

  17. Rucklidge, G.J., et al., Turnover rates of different collagen types measured by isotope ratio mass spectrometry. Biochim Biophys Acta, 1992. 1156: p. 57–61.

    PubMed  CAS  Google Scholar 

  18. Moses,.MA. and R. Langer, A metalloproteinase inhibitor as an inhibitor of neovascularization. J Cell Biochem, 1991. 47: p. 230–5.

    Article  PubMed  CAS  Google Scholar 

  19. Hayakawa, T., et al., Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett, 1992. 298: p. 29–32.

    Article  PubMed  CAS  ISI  Google Scholar 

  20. Tyagi, S.C., et al., Induction of tissue inhibitor of metalloproteinase and its mitogenic response to endothelial cells in human atherosclerotic and restenotic lesions. Can J Cardiol, 1996. 12: p. 353–62.

    PubMed  CAS  Google Scholar 

  21. Nemeth, J.A. and C.L. Goolsby, TIMP-2, a growth-stimulatory protein from SV40-transformed human fibroblasts. Exp Cell Res, 1993. 207: p. 376–82.

    Article  PubMed  CAS  Google Scholar 

  22. Baker, A.H., et al., Divergent effects of tissue inhibitor of metalloproteinase-1,-2, or-3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest, 1998. 101: p. 1478–87.

    PubMed  CAS  Google Scholar 

  23. Tummalapalli, C.M., B.J. Heath, and S.C. Tyagi, Tissue inhibitor of metalloproteinase-4 instigates apoptosis in transformed cardiac fibroblasts. J Cell Biochem, 2001. 80: p. 512–21.

    Article  PubMed  CAS  Google Scholar 

  24. Tyagi, S.C., A. Ratajska, and K.T. Weber, Myocardial matrix metalloproteinase(s): localization and activation. Mol Cell Biochem, 1993. 126: p. 49–59.

    Article  PubMed  CAS  Google Scholar 

  25. Radomski, A., et al., The role of nitric oxide and metalloproteinases in the pathogenesis of hyperoxia-induced lung injury in newborn rats. Br J Pharmacol, 1998. 125: p. 1455–62.

    Article  PubMed  CAS  Google Scholar 

  26. Tyagi, S.C., S. Kumar, and S. Borders, Reduction-oxidation (redox) state regulation of extracellular matrix metalloproteinases and tissue inhibitors in cardiac normal and transformed fibroblast cells. J Cell Biochem, 1996. 61: p. 139–51.

    Article  PubMed  Google Scholar 

  27. Frears, E.R., et al., Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite. FEBS Lett, 1996. 381: p. 21–4.

    Article  PubMed  CAS  ISI  Google Scholar 

  28. Stricklin, G.P. and J.R. Hoidal, Oxidant-mediated inactivation of TIMP. Matrix Suppl, 1992. 1: p. 325.

    PubMed  CAS  Google Scholar 

  29. Shabani, F., J. McNeil, and L. Tippett, The oxidative inactivation of tissue inhibitor of metalloproteinase-1 (TIMP-1) by hypochlorous acid (HOCI) is suppressed by antirheumatic drugs. Free Radic Res, 1998. 28: p. 115–23.

    PubMed  CAS  Google Scholar 

  30. Rohde, L.E., et al., Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation, 1999. 99: p. 3063–70.

    PubMed  CAS  ISI  Google Scholar 

  31. Spinale, F.G., et al., Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res, 1999. 85: p. 364–76.

    PubMed  CAS  Google Scholar 

  32. Hoppeler, H. and S. Kayar, Capillary and oxidative capacity of muscles. News in physiol Sci, 1988. 3: p. 113–116.

    Google Scholar 

  33. Cox, M.J., et al., Apoptosis in the left ventricle of chronic volume overload causes endocardial endothelial dysfunction in rats. Am J Physiol, 2002. 282: p. H1 197–205.

    CAS  Google Scholar 

  34. Pinsky, D.J., et al., Mechanical transduction of nitric oxide synthesis in the beating heart. Circ Res, 1997. 81: p. 372–9.

    PubMed  CAS  Google Scholar 

  35. Babior, B.M., NADPH oxidase: an update. Blood, 1999. 93: p. 1464–76.

    PubMed  CAS  ISI  Google Scholar 

  36. Roos, D., et al., Protection of human neutrophils by endogenous catalase: studies with cells from catalase-deficient individuals. J Clin Invest, 1980. 65: p. 1515–22.

    Article  PubMed  CAS  Google Scholar 

  37. Laycock, S.K., et al., Effects of chronic norepinephrine administration on cardiac function in rats. J Cardiovasc Pharmacol, 1995. 26: p. 584–9.

    PubMed  CAS  Google Scholar 

  38. Givertz, M.M. and W.S. Colucci, New targets for heart-failure therapy: endothelin, inflammatory cytokines, and oxidative stress. Lancet, 1998. 352: p. SI34–8.

    Article  PubMed  Google Scholar 

  39. Chen, C.Y., Y.L. Huang, and T.H. Lin, Association between oxidative stress and cytokine production in nickel-treated rats. Arch Biochem Biophys, 1998. 356: p. 127–32.

    Article  PubMed  CAS  Google Scholar 

  40. Tyagi, S., M. Hayden, and J. Hall, Role of angiotensin in angiogenesis and cardiac fibrosis in heart failure, Angiotensin II Receptor Blockade: Physiological and clinical implications. Prog Exp Cardiol, 1998. 2: p. 537–549.

    CAS  Google Scholar 

  41. Varin, R., et al., Improvement of endothelial function by chronic angiotensin-converting enzyme inhibition in heart failure: role of nitric oxide, prostanoids, oxidant stress, and bradykinin. Circulation, 2000. 102: p. 351–6.

    PubMed  CAS  ISI  Google Scholar 

  42. Li, P., et al., Angiotensin-(l–7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension, 1997. 29: p. 394–400.

    PubMed  CAS  ISI  Google Scholar 

  43. Zhang, H., et al., Angiotensin II-induced superoxide anion generation in human vascular endothelial cells: role of membrane-bound NADH-/NADPH-oxidases. Cardiovasc Res, 1999. 44: p. 215–22.

    Article  PubMed  CAS  Google Scholar 

  44. Cox, M.J., et al., Attenuation of oxidative stress and remodeling by cardiac inhibitor of metalloproteinase protein transfer. Circulation, 2004. 109: p. 2123–2128.

    Article  PubMed  CAS  ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Tyagi, S.C. (2005). Therapeutic Potential of TIMPs in Heart Failure. In: Villarreal, F.J. (eds) Interstitial Fibrosis in Heart Failure. Developments in Cardiovascular Medicine, vol 253. Springer, New York, NY. https://doi.org/10.1007/0-387-22825-X_18

Download citation

  • DOI: https://doi.org/10.1007/0-387-22825-X_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22824-2

  • Online ISBN: 978-0-387-22825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics