Recurrent Timing Nets for F0-based Speaker Separation

  • Peter Cariani


Auditory Nerve Recurrent Timing Scene Analysis Auditory Nerve Fiber Temporal Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, M., 2004. Time is precious. Science 304 (23 April): 523–524.Google Scholar
  2. Abeles, M., 1990. Corticonics. Cambridge University Press, Cambridge.Google Scholar
  3. Assmann, P.F. and Summerfield, Q., 1990. Modeling the perception of concurrent vowels: Vowels with different fundamental frequencies. J. Acoust. Soc. Am., 88: 680–697.CrossRefGoogle Scholar
  4. Boring, E.G., 1942. Sensation and Perception in the History of Experimental Psychology. Appleton-Century-Crofts, New York.Google Scholar
  5. Bregman, A.S., 1981. Asking the “what for” question in auditory perception. in, Perceptual Organization. M. Kubovy and J.R. Pomerantz (Eds.) Lawrence Erlbaum Assoc., Hillsdale, NJ, pp.99–118.Google Scholar
  6. Bregman, A.S., 1990. Auditory Scene Analysis: The Perceptual Organization of Sound. MIT Press, Cambridge, MA, 773 pp.Google Scholar
  7. Cariani, P., 1995. As if time really mattered: temporal strategies for neural coding of sensory information. Communication and Cognition-Artificial Intelligence (CC-AI), 12(1–2): 161–229 (Reprinted in: K Pribram, ed. Origins: Brain and Self-Organization, Hillsdale, NJ: Lawrence Erlbaum, 1994, 208–252.).Google Scholar
  8. Cariani, P., 1999. Temporal coding of periodicity pitch in the auditory system: an overview. Neural Plast, 6(4): 147–72.Google Scholar
  9. Cariani, P., 2001a. Neural timing nets. Neural Networks, 14(6–7): 737–753.Google Scholar
  10. Cariani, P., 2001b. Neural timing nets for auditory computation, in Computational Models of Auditory Function. S. Greenberg and M. Slaney (Eds.) IOS Press, Amsterdam, pp.235–249.Google Scholar
  11. Cariani, P., 2002. Temporal codes, timing nets, and music perception. J. New Music Res., 30(2): 107–136.Google Scholar
  12. Cariani, P., 2004 (in press). Temporal codes and computations for sensory representation and scene analysis. IEEE Trans.on Neural Networks, Special Issue on Temporal Coding for Neural Information Proc.Google Scholar
  13. Cariani, P. and Delgutte, B., 1993. Interspike interval distributions of auditory nerve fibers in response to concurrent vowels with same and different fundamental frequencies. Assoc. Res. Otolaryngology. Abs.: 373.Google Scholar
  14. Darwin, C.J. and Gardner, R.B., 1986. Mistuning a harmonic of a vowel: grouping and phase effects on vowel quality. J Acoust Soc Am, 79(3): 838–45.CrossRefGoogle Scholar
  15. de Chevigné, A., 1999. Waveform interactions and the segregation of concurrent vowels. J Acoust Soc Am, 106(5): 2959–72.Google Scholar
  16. de Cheveigné, A., 2004. The cancellation principle in acoustic scene analysis. This volume.Google Scholar
  17. de Cheveigné, A., 2004, in press. Pitch perception models. in, Pitch, C.J. Plack and A.J. Oxenham (Eds). Springer Verlag, New York.Google Scholar
  18. Fraisse, P., 1978. Time and rhythm perception. in, Handbook of Perception. Volume VIII. Perceptual Coding, E.C. Carterette and M.P. Friedman (Eds.) Academic Press, New York, pp.203–254.Google Scholar
  19. Ghitza, O., 1988. Temporal non-place information in the auditory-nerve firing patterns as a front-end for speech recognition in a noisy environment. J. Phonetics, 16: 109–123.Google Scholar
  20. Ghitza, O., 1992. Auditory nerve representation as a basis for speech processing. in, Advances in Speech Signal Processing, S. Furui and M.M. Sondhi (Eds.) Marcel Dekker, New York, pp.453–485.Google Scholar
  21. Grossberg, S., 1988. The Adaptive Brain, Vols I. and II. Elsevier, New York.Google Scholar
  22. Handel, S., 1989. Listening: An Introduction to the Perception of Auditory Events. MIT Press, Cambridge, 597 pp.Google Scholar
  23. Hartmann, W.M., 1988. Pitch perception and the segregation and Integration of auditory entities, in, Auditory Function: Neurobiological Bases of Hearing, G.M. Edelman (Ed) John Wiley & Sons, New York, pp.623–347.Google Scholar
  24. Irvine, D.R.F., 1986. The Auditory Brainstem. Progress in Sensory Physiology 7. Springer-Verlag, Berlin, 279 pp.Google Scholar
  25. Jones, M.R., 1976. Time, our lost dimension: toward a new theory of perception, attention, and memory. Psychological Review, 83(5): 323–255.Google Scholar
  26. Kim, D.O. and Molnar, C.E., 1979. A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones. J. Neurophysiol., 42(1): 16–30.Google Scholar
  27. Kubovy, M., 1981. Concurrent-pitch segregation and the theory of indispensable attributes. in, Perceptual Organization, M. Kubovy and J.R. Pomerantz (Eds). Lawrence Erlbaum Assoc., Hillsdale, NJ, pp.55–98.Google Scholar
  28. Lange, F.H., 1967. Correlation Techniques. Van Nostrand, Princeton, 464 pp.Google Scholar
  29. MacKay, D.M., 1962. Self-organization in the time domain. in, Self-Organizing Systems 1962, M.C. Yovitts, G.T. Jacobi and G.D. Goldstein (Eds). Spartan Books, Washington, D.C., pp.37–48.Google Scholar
  30. Meddis, R. and Hewitt, M.J., 1992. Modeling the perception of concurrent vowels with different fundamental frequencies. J. Acoust. Soc. Am., 91: 233–245.CrossRefGoogle Scholar
  31. Mellinger, D.K. and Mont-Reynaud, B.M., 1996. Scene analysis. in, Auditory Computation, H. Hawkins, T. McMullin, A.N. Popper and R.R. Fay (Eds.) Springer Verlag, New York, pp.271–331.Google Scholar
  32. Meyer-Eppler, W., 1953. Exhaustion methods of selecting signals from noisy backgrounds. in, Communication Theory, W. Jackson (Ed) Butterworths, London, pp. 183–194.Google Scholar
  33. Miller, R.R. and Barnet, R.C., 1993. The role of time in elementary associations. Current Directions in Psychological Science, 2(4): 106–111.CrossRefGoogle Scholar
  34. Palmer, A.R., 1988. The representation of concurrent vowels in the temporal discharge patterns of auditory nerve fibers. in, Basic Issues in Hearing, H. Duifhuis, J.W. Horst and H.P. Wit (Eds.) Academic Press, London, pp. 244–251.Google Scholar
  35. Palmer, A.R., 1992. Segregation of the responses to paired vowels in the auditory nerve of the guinea pig using autocorrelation. in, The Auditory Processing of Speech, S.M.E.H. (Ed) Mouton de Gruyter, Berlin, pp. 115–124.Google Scholar
  36. Patterson, R.D., Allerhand, M.H. and Giguere, C., 1995. Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. J. Acoust. Soc. Am., 98(4): 1890–1894.CrossRefGoogle Scholar
  37. Rose, J.E., Hind, J.E., Brugge, J.R. and Anderson, D.J., 1971. Some effects of stimulus intensity on response of single auditory nerve fibers of the squirrel monkey. J Neurophysiology, 34(4): 685–699.Google Scholar
  38. Seeker-Walker, H.E. and Searle, C.L., 1990. Time-domain analysis of auditory-nerve-fiber firing rates. J. Acoust. Soc. Am., 88(3): 1427–1436.Google Scholar
  39. Sinex, D.G., Sabes, S.J. and Li, H., 2002. Responses of inferior colliculus neurons to harmonic and mistuned complex tones. Hear. Res., 168: 150–62.CrossRefGoogle Scholar
  40. Stern, R. 2003. Signal separation motivated by auditory perception. Perspectives on Speech Separation, Montreal, October 30–November 1, 2003.
  41. Summerfield, Q. and Assmann, P.F., 1991. Perception of concurrent vowels: effects of harmonic misalignment and pitch-period asynchrony. J. Acoust. Soc. Am., 89(3): 1364–1377.CrossRefGoogle Scholar
  42. Thatcher, R.W. and John, E.R., 1977. Functional Neuroscience, Vol. I. Foundations of Cognitive Processes. Lawrence Erlbaum, Hillsdale, NJ, 382 pp.Google Scholar
  43. Wang, D.L. and Brown, G.J., 1999. Separation of speech from interfering sounds based on oscillatory correlation. IEEE Trans. Neural Networks, 10(3): 684–697.MathSciNetGoogle Scholar
  44. Young, E.D. and Sachs, M.B., 1979. Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers. J. Acoust. Soc. Am., 66(5): 1381–1403.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Peter Cariani
    • 1
  1. 1.Eaton Peabody Laboratory of Auditory PhysiologyMassachusetts Eye & Ear InfirmaryBostonUSA

Personalised recommendations