Skip to main content

Features of Parallel TCP with Emphasis on Congestion Avoidance in Heterogeneous Networks

  • Chapter
Advanced Wired and Wireless Networks

Part of the book series: Multimedia Systems and Applications Series ((MMSA,volume 26))

Abstract

In this chapter we describe and model Parallel TCP, an extension of the TCP protocol, designed for heterogeneous networks with wired and wireless (possibly multihop) links. Parallel TCP splits a standard TCP connection into a number of parallel virtual connections. An analytical and a simulation model are presented and used to evaluate the performance of Parallel TCP. It is shown that based on these models Parallel TCP could improve TCP performance in heterogeneous networks by either dynamically adjusting the number of virtual connections or adjusting the Congestion Avoidance (CA) algorithm in a static number of connections. The latter is a preferable solution as dynamically changing the number of connections creates a large connection management problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Xylomenos, G. Polyzos, P. Mahonen and M. Saaranen, “TCP Per-formance Issues over Wireless Links”, IEEE Comm. Mag., April, 2001.

    Google Scholar 

  2. J. Lee, D. Gunter, B. Tierney, W. Allock, J. Bester, J. Bresnahan and S. Tecke, “Applied Techniques for High Bandwidth Data Transfers across Wide Area Networks”, LBNL-46269, 2000.

    Google Scholar 

  3. J. Bolot, “Characterizing End-to-End packet delay and loss in the Internet”, J. of High Speed Networks, 2(3), 1993.

    Google Scholar 

  4. T. Lakshman and U. Madhow, “The performance of TCP/IP for networks with high bandwidth-delay products and random loss,” IEEE/ACM Transactions on Networking, 5(3), 1997.

    Google Scholar 

  5. V. Jacobson, “Congestion avoidance and control”, ACM SIGCOMM, August 1988.

    Google Scholar 

  6. S. Floyd, “A Report on Recent Developments in TCP Congestion Control”, IEEE Comm. Mag., April, 2001.

    Google Scholar 

  7. V. Tsaoussidis and I. Matta, “Open issues on TCP for mobile com-puting”, J. of Wireless Comm. & Mobile Computing, 2(2), 2002.

    Google Scholar 

  8. C. Perkins, ed., “IP Mobility Support for IPv4”, RFC3220, Jan. 2002.

    Google Scholar 

  9. L. Brakmo and L. Peterson, “TCP Vegas: End to End Congestion Avoidance on a Global Internet”, IEEE J. Sel. Areas Comm., 13(8), 1995.

    Google Scholar 

  10. W. Xu, A. Qureshi and K. Sarkies, “a Novel TCP Congestion Control Scheme and Its Performance Evaluation”, IEEProc. Comm., 149(4), Aug. 2002.

    Google Scholar 

  11. Q. Fu and L. White, “The Impact of Background Traffic on TCP Performance over Indirect and Direct Routing”, ICCS, 2002.

    Google Scholar 

  12. Tom Kelly, “Scalable TCP: Improving performance in highspeed wide area networks”, Computer Communication Review 32(2), April 2003.

    Google Scholar 

  13. Sally Floyd, “HighSpeed TCP for Large Congestion Windows”, RFC 3649, Dec. 2003.

    Google Scholar 

  14. Dina Katabi, Mark Handley, and Chalrie Rohrs, “Congestion Control for High Bandwidth-Delay Product Networks”, ACMSIGCOMM, 2002.

    Google Scholar 

  15. Cheng Jin, David X. Wei and Steven H. Low, “FAST TCP: motivation, architecture, algorithms, performance”, IEEE INFOCOM, March 2004

    Google Scholar 

  16. K. K. Ramakrishnan and S. Floyd, “Proposal to add explicit congestion notification (ecn) to IP”, RFC 2481, Jan. 1999.

    Google Scholar 

  17. M. Allman, H. Kruse and S. Ostermann, “An Application-Level Solution to TCP’s Satellite Inefficiencies”, Proc. WOSBIS, Nov. 1996.

    Google Scholar 

  18. H. Balakrishnan, H. Rahul, and S. Seshan, “An Integrated Congestion Management Architecture for Internet Hosts”, ACM SIGCOMM, Sept. 1999.

    Google Scholar 

  19. L. Eggert, J. Heidemann, and J. Touch, “Effects of Ensemble-TCP”, ACM Computer Communication Review, 30(1), pp. 15–29, Jan. 2000.

    Google Scholar 

  20. M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control”, RFC 2581, April 1999.

    Google Scholar 

  21. D. Iannucci and J. Lekashman, “MFTP: Virtual TCP Window Scaling Using Multiple Connections”, RND-92-002, NASA Ames Research Centre, Jan. 1992.

    Google Scholar 

  22. J. Hahn, “MFTP: Recent Enhancements and Performance Measurements”, RND-94-006, NASA Ames Research Centre, June 1994.

    Google Scholar 

  23. H.-Y. Hsieh and R. Sivakumar, “A Transport Layer Approach for Achieving Aggregate Bandwidths on Multi-homed Mobile Hosts”, MOBICOM, Sept. 2002.

    Google Scholar 

  24. H. Sivakumar, S. Bailey, and R. Grossman, “PSockets: The case for application-level network striping for data intensive applications using high speed wide area networks”, Proc. IEEE Supercomputing, 2000.

    Google Scholar 

  25. M. Mathis, J. Semke, J. Mahdavi, T. Ott. “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm”, Computer Comm. Review, 27(3), July 1997.

    Google Scholar 

  26. T. Hacker, B. Athey and B. Noble, “The End-to-End Performance Effects of Parallel TCP Sockets on a Lossy Wide-Area Network”, Proc. IPDPS, April 2002.

    Google Scholar 

  27. T. Hacker, B. Noble and B. Athey, “The Effects of Systemic Packet Loss on Aggregate TCP Flows”, Proc. IEEE Supercomputing, 2002

    Google Scholar 

  28. A. Zanella, G. Procissi, M. Gerla, M. Sanadidi, “TCP Westwood: Ana lytic Model and Performance Evaluation”, Globecom, Nov. 2001.

    Google Scholar 

  29. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson, “Stream Control Transmission Protocol”, RFC 2960, October 2000.

    Google Scholar 

  30. Q. Fu and J. Indulska, “Parallel TCP for Error Prone Links”, RIUPEEEC, 2003.

    Google Scholar 

  31. Q. Fu and J. Indulska, “Splitting TCP in Parallel for Error Prone Links”, ICICS-PCM, 2003.

    Google Scholar 

  32. M. Allman, S. Floyd and C. Partridge, “Increasing TCP’s Initial Window”, RFC 2414, September 1998.

    Google Scholar 

  33. M. Allman, C. Hayes and S. Ostermann, “An Evaluation of TCP with Larger Initial Windows”, Computer Comm. Review, 28(3), July 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Fu, Q., Indulska, J. (2005). Features of Parallel TCP with Emphasis on Congestion Avoidance in Heterogeneous Networks. In: Wysocki, T.A., Dadej, A., Wysocki, B.J. (eds) Advanced Wired and Wireless Networks. Multimedia Systems and Applications Series, vol 26. Springer, Boston, MA. https://doi.org/10.1007/0-387-22792-X_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-22792-X_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-22781-8

  • Online ISBN: 978-0-387-22792-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics